Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16613 by ajfour last updated on 24/Jun/17

Commented by ajfour last updated on 24/Jun/17

From the endpoint of a diameter  of a sphere draw a chord so that  the surface generated by a rotation  about this diameter divides the  volume of the sphere into two  equal parts. Determine the angle  between the chord and the diameter.

$$\mathrm{From}\:\mathrm{the}\:\mathrm{endpoint}\:\mathrm{of}\:\mathrm{a}\:\mathrm{diameter} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{sphere}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{chord}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{surface}\:\mathrm{generated}\:\mathrm{by}\:\mathrm{a}\:\mathrm{rotation} \\ $$$$\mathrm{about}\:\mathrm{this}\:\mathrm{diameter}\:\mathrm{divides}\:\mathrm{the} \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{into}\:\mathrm{two} \\ $$$$\mathrm{equal}\:\mathrm{parts}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{and}\:\mathrm{the}\:\mathrm{diameter}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Jun/17

mr Ajfour! way your sphere is so unhappy?

$${mr}\:{Ajfour}!\:{way}\:{your}\:{sphere}\:{is}\:{so}\:{unhappy}? \\ $$

Answered by mrW1 last updated on 26/Jun/17

with h=height of cap    πh^2 (R−(h/3))+(1/3)πh(2R−h)^2 =(1/2)×(4/3)πR^3   h^2 (3R−h)+h(2R−h)^2 =2R^3   3Rh^2 −h^3 +4R^2 h−4Rh^2 +h^3 −2R^3 =0  h^2 −4Rh+2R^2 =0  h=((4R−R(√(16−4×2)))/2)=(2−(√2))R  cos 2θ=((R−h)/R)=(√2)−1  ⇒θ=(1/2)cos^(−1) ((√2)−1)=32.7°

$$\mathrm{with}\:\mathrm{h}=\mathrm{height}\:\mathrm{of}\:\mathrm{cap} \\ $$$$ \\ $$$$\pi\mathrm{h}^{\mathrm{2}} \left(\mathrm{R}−\frac{\mathrm{h}}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{3}}\pi\mathrm{h}\left(\mathrm{2R}−\mathrm{h}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{3}}\pi\mathrm{R}^{\mathrm{3}} \\ $$$$\mathrm{h}^{\mathrm{2}} \left(\mathrm{3R}−\mathrm{h}\right)+\mathrm{h}\left(\mathrm{2R}−\mathrm{h}\right)^{\mathrm{2}} =\mathrm{2R}^{\mathrm{3}} \\ $$$$\mathrm{3Rh}^{\mathrm{2}} −\mathrm{h}^{\mathrm{3}} +\mathrm{4R}^{\mathrm{2}} \mathrm{h}−\mathrm{4Rh}^{\mathrm{2}} +\mathrm{h}^{\mathrm{3}} −\mathrm{2R}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{h}^{\mathrm{2}} −\mathrm{4Rh}+\mathrm{2R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{h}=\frac{\mathrm{4R}−\mathrm{R}\sqrt{\mathrm{16}−\mathrm{4}×\mathrm{2}}}{\mathrm{2}}=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\mathrm{R} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\frac{\mathrm{R}−\mathrm{h}}{\mathrm{R}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\Rightarrow\theta=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)=\mathrm{32}.\mathrm{7}° \\ $$

Commented by ajfour last updated on 26/Jun/17

 Sir, answer given is  θ=cos^(−1) ((1/(2^ )^(1/4) )).

$$\:\mathrm{Sir},\:\mathrm{answer}\:\mathrm{given}\:\mathrm{is}\:\:\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\sqrt[{\mathrm{4}}]{\mathrm{2}^{} }}\right). \\ $$

Commented by mrW1 last updated on 26/Jun/17

That′s the same:  θ=(1/2)cos^(−1) ((√2)−1)=cos^(−1) (1/(^4 (√2)))    cos 2θ=(√2)−1  2cos^2  θ−1=(√2)−1  2cos^2  θ=(√2)  cos^2  θ=(1/(√2))  cos θ=(1/(^4 (√2)))  θ=cos^(−1) ((1/(^4 (√2))))

$$\mathrm{That}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}: \\ $$$$\theta=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:^{\mathrm{4}} \sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\mathrm{2cos}^{\mathrm{2}} \:\theta−\mathrm{1}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\mathrm{2cos}^{\mathrm{2}} \:\theta=\sqrt{\mathrm{2}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\:^{\mathrm{4}} \sqrt{\mathrm{2}}} \\ $$$$\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:^{\mathrm{4}} \sqrt{\mathrm{2}}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com