Question Number 16364 by Tinkutara last updated on 21/Jun/17 | ||
Answered by ajfour last updated on 21/Jun/17 | ||
Commented by ajfour last updated on 21/Jun/17 | ||
$${In}\:\bigtriangleup{BCG}\:,\:{applying}\:{the}\:{sine}\:{rule}\:: \\ $$$${first}\:{the}\:{angles}, \\ $$$$\:\angle{CBG}=\frac{\pi}{\mathrm{2}}−\frac{{B}}{\mathrm{2}}\:,\:\angle{BGC}=\frac{{B}}{\mathrm{2}}+\frac{{C}}{\mathrm{2}} \\ $$$$\angle{CGD}\:=\:{C}/\mathrm{2}\:\:\Rightarrow{CG}=\:\frac{{r}_{\mathrm{1}} }{\mathrm{cos}\:\left({C}/\mathrm{2}\right)} \\ $$$$\:\frac{{CG}}{\mathrm{sin}\:\angle{CBG}}\:=\:\frac{{BC}}{\mathrm{sin}\:\angle{BGC}} \\ $$$$\:\frac{\left[{r}_{\mathrm{1}} /\mathrm{cos}\:\left({C}/\mathrm{2}\right)\right]}{\mathrm{sin}\:\left(\pi/\mathrm{2}−{B}/\mathrm{2}\right)}\:=\frac{{a}}{\mathrm{sin}\:\left({B}/\mathrm{2}+{C}/\mathrm{2}\right)} \\ $$$$\:\frac{{r}_{\mathrm{1}} }{\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}}\:=\:\frac{{a}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{{A}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\:\:{r}_{\mathrm{1}} \:=\:\frac{{a}\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}}{\mathrm{cos}\:\frac{{A}}{\mathrm{2}}}\:\:. \\ $$$$\:{similarly}\:{for}\:{r}_{\mathrm{2}} ,\:{and}\:{r}_{\mathrm{3}} \:. \\ $$ | ||
Commented by Tinkutara last updated on 21/Jun/17 | ||
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$ | ||