Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16364 by Tinkutara last updated on 21/Jun/17

Answered by ajfour last updated on 21/Jun/17

Commented by ajfour last updated on 21/Jun/17

In △BCG , applying the sine rule :  first the angles,   ∠CBG=(π/2)−(B/2) , ∠BGC=(B/2)+(C/2)  ∠CGD = C/2  ⇒CG= (r_1 /(cos (C/2)))   ((CG)/(sin ∠CBG)) = ((BC)/(sin ∠BGC))   (([r_1 /cos (C/2)])/(sin (π/2−B/2))) =(a/(sin (B/2+C/2)))   (r_1 /(cos (B/2)cos (C/2))) = (a/(sin ((π/2)−(A/2))))  ⇒  r_1  = ((acos (B/2)cos (C/2))/(cos (A/2)))  .   similarly for r_2 , and r_3  .

$${In}\:\bigtriangleup{BCG}\:,\:{applying}\:{the}\:{sine}\:{rule}\:: \\ $$$${first}\:{the}\:{angles}, \\ $$$$\:\angle{CBG}=\frac{\pi}{\mathrm{2}}−\frac{{B}}{\mathrm{2}}\:,\:\angle{BGC}=\frac{{B}}{\mathrm{2}}+\frac{{C}}{\mathrm{2}} \\ $$$$\angle{CGD}\:=\:{C}/\mathrm{2}\:\:\Rightarrow{CG}=\:\frac{{r}_{\mathrm{1}} }{\mathrm{cos}\:\left({C}/\mathrm{2}\right)} \\ $$$$\:\frac{{CG}}{\mathrm{sin}\:\angle{CBG}}\:=\:\frac{{BC}}{\mathrm{sin}\:\angle{BGC}} \\ $$$$\:\frac{\left[{r}_{\mathrm{1}} /\mathrm{cos}\:\left({C}/\mathrm{2}\right)\right]}{\mathrm{sin}\:\left(\pi/\mathrm{2}−{B}/\mathrm{2}\right)}\:=\frac{{a}}{\mathrm{sin}\:\left({B}/\mathrm{2}+{C}/\mathrm{2}\right)} \\ $$$$\:\frac{{r}_{\mathrm{1}} }{\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}}\:=\:\frac{{a}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{{A}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\:\:{r}_{\mathrm{1}} \:=\:\frac{{a}\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}}{\mathrm{cos}\:\frac{{A}}{\mathrm{2}}}\:\:. \\ $$$$\:{similarly}\:{for}\:{r}_{\mathrm{2}} ,\:{and}\:{r}_{\mathrm{3}} \:. \\ $$

Commented by Tinkutara last updated on 21/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com