Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 163178 by Tawa11 last updated on 04/Jan/22

Answered by mr W last updated on 05/Jan/22

mass of the balls=m  force on ball 1 at beginning=f  distance between the balls at beginning=s=1  v_(1,i,n) =velocity of ball 1 before n^(th)  collision  v_(1,f,n) =velocity of ball 1 after n^(th)  collision  v_(2,i,n) =velocity of ball 2 before n^(th)  collision  v_(2,f,n) =velocity of ball 2 after n^(th)  collision  a_n =acceleration of ball 1 after n^(th)  collision  s_n =distance between n^(th)  and (n+1)^(th)  collision    as we know, after an elastic collision   from two balls with the same mass   they just exchange their velocities, i.e.  v_(1,f,n) =v_(2,i,n)   v_(2,f,n) =v_(1,i,n)     before the 1^(st)  collision:  v_(2,i,1) =0  a_0 =(f/m)  v_(1,i,1) =(√(2sa_0 ))=(√((2sf)/m))=u say   ⇒(f/m)=(u^2 /(2s))    after the 1^(st)  collision:  v_(2,f,1) =v_(1,i,1) =u  v_(1,f,1) =v_(2,i,1) =0  after the collision the ball 1 gets a  force which is 2 times of the force  before the collision:  f_1 =2f_0 =2f  a_1 =(f_1 /m)=((2f)/m)=(u^2 /s)  say after a distand s_1  both balls  collide with each other again after  a time t.  s_1 =v_(2,f,1) t=ut  s_1 =v_(1,f,1) t+(1/2)a_1 t^2   v_(2,f,1) t=v_(1,f,1) t+(1/2)a_1 t^2   t=((2(v_(2,f,1) −v_(1,f,1) ))/a_1 )=((2s(u−0))/u^2 )=((2s)/u)  s_1 =((2s(v_(2,f,1) −v_(1,f,1) ))/u)=((2s(u−0))/u)=2s  v_(2,i,2) =v_(2,f,1) =u  v_(1,i,2) =v_(1,f,1) +a_1 t=0+(u^2 /s)×((2s)/u)=2u    after the n^(th)  collision:  v_(1,f,n) =v_(2,i,n)   v_(2,f,n) =v_(1,i,n)   f_n =2^n f  a_n =(f_n /m)=((2^n f)/m)=2^n ×(u^2 /(2s))=((2^(n−1) u^2 )/s)  say after a distance s_n  the both balls  collide with each other again after  time t.  s_n =v_(2,f,n) t  s_n =v_(1,f,n) t+(1/2)a_n t^2   v_(2,f,n) t=v_(1,f,n) t+(1/2)a_n t^2   t=((s(v_(2,f,n) −v_(1,f,n) ))/(2^(n−2) u^2 ))  s_n =((s(v_(2,f,n) −v_(1,f,n) )v_(2,f,n) )/(2^(n−2) u^2 ))  v_(2,i,n+1) =v_(2,f,n)   v_(1,i,n+1) =v_(1,f,n) +a_n t=v_(1,f,n) +((2^(n−1) u^2 )/s)×((s(v_(2,f,n) −v_(1,f,n) ))/(2^(n−2) u^2 ))  v_(1,i,n+1) =2v_(2,f,n) −v_(1,f,n)   v_(1,i,n+1) =2v_(1,i,n) −v_(1,f,n)   v_(1,i,n+1) =2v_(1,i,n) −v_(2,i,n)   v_(1,i,n+1) =2v_(1,i,n) −v_(2,f,n−1)   v_(1,i,n+1) =2v_(1,i,n) −v_(1,i,n−1)   v_(1,i,n+1) −v_(1,i,n) =v_(1,i,n) −v_(1,i,n−1)                               =v_(1,i,2) −v_(1,i,1) =2u−u=u  ⇒v_(1,i,n) =nu  ⇒v_(2,i,n) =v_(2,f,n−1) =v_(1,i,n−1) =(n−1)u  s_n =((s(v_(2,f,n) −v_(1,f,n) )v_(2,f,n) )/(2^(n−2) u^2 ))  s_n =((s(v_(1,i,n) −v_(2,i,n) )v_(1,i,n) )/(2^(n−2) u^2 ))  ⇒s_n =((snu^2 )/(2^(n−2) u^2 ))  ⇒s_n =((ns)/2^(n−2) )    total distance ball 1 has traveled till  the (n+1)^(th)  collision:  S_n =s_0 +Σ_(k=1) ^n s_k =s+Σ_(k=1) ^n ((ks)/2^(k−2) )  with s=1 m  S_n =1+4Σ_(k=1) ^n (k/2^k )  S_n =1+4(2−((n+2)/2^n ))  lim_(n→∞) S_n =1+4×2=9 m   that means after a large number of  collisions the ball 1 has traveled a   total distance of 9 m.  the sum of distances between the  collisions is 8 m.  ■

$${mass}\:{of}\:{the}\:{balls}={m} \\ $$$${force}\:{on}\:{ball}\:\mathrm{1}\:{at}\:{beginning}={f} \\ $$$${distance}\:{between}\:{the}\:{balls}\:{at}\:{beginning}={s}=\mathrm{1} \\ $$$${v}_{\mathrm{1},{i},{n}} ={velocity}\:{of}\:{ball}\:\mathrm{1}\:{before}\:{n}^{{th}} \:{collision} \\ $$$${v}_{\mathrm{1},{f},{n}} ={velocity}\:{of}\:{ball}\:\mathrm{1}\:{after}\:{n}^{{th}} \:{collision} \\ $$$${v}_{\mathrm{2},{i},{n}} ={velocity}\:{of}\:{ball}\:\mathrm{2}\:{before}\:{n}^{{th}} \:{collision} \\ $$$${v}_{\mathrm{2},{f},{n}} ={velocity}\:{of}\:{ball}\:\mathrm{2}\:{after}\:{n}^{{th}} \:{collision} \\ $$$${a}_{{n}} ={acceleration}\:{of}\:{ball}\:\mathrm{1}\:{after}\:{n}^{{th}} \:{collision} \\ $$$${s}_{{n}} ={distance}\:{between}\:{n}^{{th}} \:{and}\:\left({n}+\mathrm{1}\right)^{{th}} \:{collision} \\ $$$$ \\ $$$${as}\:{we}\:{know},\:{after}\:{an}\:{elastic}\:{collision}\: \\ $$$${from}\:{two}\:{balls}\:{with}\:{the}\:{same}\:{mass}\: \\ $$$${they}\:{just}\:{exchange}\:{their}\:{velocities},\:{i}.{e}. \\ $$$${v}_{\mathrm{1},{f},{n}} ={v}_{\mathrm{2},{i},{n}} \\ $$$${v}_{\mathrm{2},{f},{n}} ={v}_{\mathrm{1},{i},{n}} \\ $$$$ \\ $$$$\underline{{before}\:{the}\:\mathrm{1}^{{st}} \:{collision}:} \\ $$$${v}_{\mathrm{2},{i},\mathrm{1}} =\mathrm{0} \\ $$$${a}_{\mathrm{0}} =\frac{{f}}{{m}} \\ $$$${v}_{\mathrm{1},{i},\mathrm{1}} =\sqrt{\mathrm{2}{sa}_{\mathrm{0}} }=\sqrt{\frac{\mathrm{2}{sf}}{{m}}}={u}\:{say} \\ $$$$\:\Rightarrow\frac{{f}}{{m}}=\frac{{u}^{\mathrm{2}} }{\mathrm{2}{s}} \\ $$$$ \\ $$$$\underline{{after}\:{the}\:\mathrm{1}^{{st}} \:{collision}:} \\ $$$${v}_{\mathrm{2},{f},\mathrm{1}} ={v}_{\mathrm{1},{i},\mathrm{1}} ={u} \\ $$$${v}_{\mathrm{1},{f},\mathrm{1}} ={v}_{\mathrm{2},{i},\mathrm{1}} =\mathrm{0} \\ $$$${after}\:{the}\:{collision}\:{the}\:{ball}\:\mathrm{1}\:{gets}\:{a} \\ $$$${force}\:{which}\:{is}\:\mathrm{2}\:{times}\:{of}\:{the}\:{force} \\ $$$${before}\:{the}\:{collision}: \\ $$$${f}_{\mathrm{1}} =\mathrm{2}{f}_{\mathrm{0}} =\mathrm{2}{f} \\ $$$${a}_{\mathrm{1}} =\frac{{f}_{\mathrm{1}} }{{m}}=\frac{\mathrm{2}{f}}{{m}}=\frac{{u}^{\mathrm{2}} }{{s}} \\ $$$${say}\:{after}\:{a}\:{distand}\:{s}_{\mathrm{1}} \:{both}\:{balls} \\ $$$${collide}\:{with}\:{each}\:{other}\:{again}\:{after} \\ $$$${a}\:{time}\:{t}. \\ $$$${s}_{\mathrm{1}} ={v}_{\mathrm{2},{f},\mathrm{1}} {t}={ut} \\ $$$${s}_{\mathrm{1}} ={v}_{\mathrm{1},{f},\mathrm{1}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{a}_{\mathrm{1}} {t}^{\mathrm{2}} \\ $$$${v}_{\mathrm{2},{f},\mathrm{1}} {t}={v}_{\mathrm{1},{f},\mathrm{1}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{a}_{\mathrm{1}} {t}^{\mathrm{2}} \\ $$$${t}=\frac{\mathrm{2}\left({v}_{\mathrm{2},{f},\mathrm{1}} −{v}_{\mathrm{1},{f},\mathrm{1}} \right)}{{a}_{\mathrm{1}} }=\frac{\mathrm{2}{s}\left({u}−\mathrm{0}\right)}{{u}^{\mathrm{2}} }=\frac{\mathrm{2}{s}}{{u}} \\ $$$${s}_{\mathrm{1}} =\frac{\mathrm{2}{s}\left({v}_{\mathrm{2},{f},\mathrm{1}} −{v}_{\mathrm{1},{f},\mathrm{1}} \right)}{{u}}=\frac{\mathrm{2}{s}\left({u}−\mathrm{0}\right)}{{u}}=\mathrm{2}{s} \\ $$$${v}_{\mathrm{2},{i},\mathrm{2}} ={v}_{\mathrm{2},{f},\mathrm{1}} ={u} \\ $$$${v}_{\mathrm{1},{i},\mathrm{2}} ={v}_{\mathrm{1},{f},\mathrm{1}} +{a}_{\mathrm{1}} {t}=\mathrm{0}+\frac{{u}^{\mathrm{2}} }{{s}}×\frac{\mathrm{2}{s}}{{u}}=\mathrm{2}{u} \\ $$$$ \\ $$$$\underline{{after}\:{the}\:{n}^{{th}} \:{collision}:} \\ $$$${v}_{\mathrm{1},{f},{n}} ={v}_{\mathrm{2},{i},{n}} \\ $$$${v}_{\mathrm{2},{f},{n}} ={v}_{\mathrm{1},{i},{n}} \\ $$$${f}_{{n}} =\mathrm{2}^{{n}} {f} \\ $$$${a}_{{n}} =\frac{{f}_{{n}} }{{m}}=\frac{\mathrm{2}^{{n}} {f}}{{m}}=\mathrm{2}^{{n}} ×\frac{{u}^{\mathrm{2}} }{\mathrm{2}{s}}=\frac{\mathrm{2}^{{n}−\mathrm{1}} {u}^{\mathrm{2}} }{{s}} \\ $$$${say}\:{after}\:{a}\:{distance}\:{s}_{{n}} \:{the}\:{both}\:{balls} \\ $$$${collide}\:{with}\:{each}\:{other}\:{again}\:{after} \\ $$$${time}\:{t}. \\ $$$${s}_{{n}} ={v}_{\mathrm{2},{f},{n}} {t} \\ $$$${s}_{{n}} ={v}_{\mathrm{1},{f},{n}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{a}_{{n}} {t}^{\mathrm{2}} \\ $$$${v}_{\mathrm{2},{f},{n}} {t}={v}_{\mathrm{1},{f},{n}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{a}_{{n}} {t}^{\mathrm{2}} \\ $$$${t}=\frac{{s}\left({v}_{\mathrm{2},{f},{n}} −{v}_{\mathrm{1},{f},{n}} \right)}{\mathrm{2}^{{n}−\mathrm{2}} {u}^{\mathrm{2}} } \\ $$$${s}_{{n}} =\frac{{s}\left({v}_{\mathrm{2},{f},{n}} −{v}_{\mathrm{1},{f},{n}} \right){v}_{\mathrm{2},{f},{n}} }{\mathrm{2}^{{n}−\mathrm{2}} {u}^{\mathrm{2}} } \\ $$$${v}_{\mathrm{2},{i},{n}+\mathrm{1}} ={v}_{\mathrm{2},{f},{n}} \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} ={v}_{\mathrm{1},{f},{n}} +{a}_{{n}} {t}={v}_{\mathrm{1},{f},{n}} +\frac{\mathrm{2}^{{n}−\mathrm{1}} {u}^{\mathrm{2}} }{{s}}×\frac{{s}\left({v}_{\mathrm{2},{f},{n}} −{v}_{\mathrm{1},{f},{n}} \right)}{\mathrm{2}^{{n}−\mathrm{2}} {u}^{\mathrm{2}} } \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} =\mathrm{2}{v}_{\mathrm{2},{f},{n}} −{v}_{\mathrm{1},{f},{n}} \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} =\mathrm{2}{v}_{\mathrm{1},{i},{n}} −{v}_{\mathrm{1},{f},{n}} \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} =\mathrm{2}{v}_{\mathrm{1},{i},{n}} −{v}_{\mathrm{2},{i},{n}} \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} =\mathrm{2}{v}_{\mathrm{1},{i},{n}} −{v}_{\mathrm{2},{f},{n}−\mathrm{1}} \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} =\mathrm{2}{v}_{\mathrm{1},{i},{n}} −{v}_{\mathrm{1},{i},{n}−\mathrm{1}} \\ $$$${v}_{\mathrm{1},{i},{n}+\mathrm{1}} −{v}_{\mathrm{1},{i},{n}} ={v}_{\mathrm{1},{i},{n}} −{v}_{\mathrm{1},{i},{n}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={v}_{\mathrm{1},{i},\mathrm{2}} −{v}_{\mathrm{1},{i},\mathrm{1}} =\mathrm{2}{u}−{u}={u} \\ $$$$\Rightarrow{v}_{\mathrm{1},{i},{n}} ={nu} \\ $$$$\Rightarrow{v}_{\mathrm{2},{i},{n}} ={v}_{\mathrm{2},{f},{n}−\mathrm{1}} ={v}_{\mathrm{1},{i},{n}−\mathrm{1}} =\left({n}−\mathrm{1}\right){u} \\ $$$${s}_{{n}} =\frac{{s}\left({v}_{\mathrm{2},{f},{n}} −{v}_{\mathrm{1},{f},{n}} \right){v}_{\mathrm{2},{f},{n}} }{\mathrm{2}^{{n}−\mathrm{2}} {u}^{\mathrm{2}} } \\ $$$${s}_{{n}} =\frac{{s}\left({v}_{\mathrm{1},{i},{n}} −{v}_{\mathrm{2},{i},{n}} \right){v}_{\mathrm{1},{i},{n}} }{\mathrm{2}^{{n}−\mathrm{2}} {u}^{\mathrm{2}} } \\ $$$$\Rightarrow{s}_{{n}} =\frac{{snu}^{\mathrm{2}} }{\mathrm{2}^{{n}−\mathrm{2}} {u}^{\mathrm{2}} } \\ $$$$\Rightarrow{s}_{{n}} =\frac{{ns}}{\mathrm{2}^{{n}−\mathrm{2}} } \\ $$$$ \\ $$$${total}\:{distance}\:{ball}\:\mathrm{1}\:{has}\:{traveled}\:{till} \\ $$$${the}\:\left({n}+\mathrm{1}\right)^{{th}} \:{collision}: \\ $$$${S}_{{n}} ={s}_{\mathrm{0}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{s}_{{k}} ={s}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{ks}}{\mathrm{2}^{{k}−\mathrm{2}} } \\ $$$${with}\:{s}=\mathrm{1}\:{m} \\ $$$${S}_{{n}} =\mathrm{1}+\mathrm{4}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}}{\mathrm{2}^{{k}} } \\ $$$${S}_{{n}} =\mathrm{1}+\mathrm{4}\left(\mathrm{2}−\frac{{n}+\mathrm{2}}{\mathrm{2}^{{n}} }\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =\mathrm{1}+\mathrm{4}×\mathrm{2}=\mathrm{9}\:{m}\: \\ $$$${that}\:{means}\:{after}\:{a}\:{large}\:{number}\:{of} \\ $$$${collisions}\:{the}\:{ball}\:\mathrm{1}\:{has}\:{traveled}\:{a}\: \\ $$$${total}\:{distance}\:{of}\:\mathrm{9}\:{m}. \\ $$$${the}\:{sum}\:{of}\:{distances}\:{between}\:{the} \\ $$$${collisions}\:{is}\:\mathrm{8}\:{m}. \\ $$$$\blacksquare \\ $$

Commented by mr W last updated on 05/Jan/22

please compare with answer in book.

$${please}\:{compare}\:{with}\:{answer}\:{in}\:{book}. \\ $$

Commented by Tawa11 last updated on 06/Jan/22

Correct sir. God bless you more. I really appreciate.

$$\mathrm{Correct}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Commented by mr W last updated on 06/Jan/22

do you know the answer?

$${do}\:{you}\:{know}\:{the}\:{answer}? \\ $$

Commented by Tawa11 last updated on 06/Jan/22

Yes sir. The answer, they wrote    8d   at the back of the book sir.

$$\mathrm{Yes}\:\mathrm{sir}.\:\mathrm{The}\:\mathrm{answer},\:\mathrm{they}\:\mathrm{wrote}\:\:\:\:\mathrm{8d}\:\:\:\mathrm{at}\:\mathrm{the}\:\mathrm{back}\:\mathrm{of}\:\mathrm{the}\:\mathrm{book}\:\mathrm{sir}. \\ $$

Commented by Tawa11 last updated on 06/Jan/22

So, I think they mean   8m.

$$\mathrm{So},\:\mathrm{I}\:\mathrm{think}\:\mathrm{they}\:\mathrm{mean}\:\:\:\mathrm{8m}. \\ $$

Commented by mr W last updated on 06/Jan/22

the question says the distance between  the balls at t=0 is 1m. if this distance  is d (or s in my workings), then the  sum of the distances between the  collisions is 8d (or 8s in my workings).

$${the}\:{question}\:{says}\:{the}\:{distance}\:{between} \\ $$$${the}\:{balls}\:{at}\:{t}=\mathrm{0}\:{is}\:\mathrm{1}{m}.\:{if}\:{this}\:{distance} \\ $$$${is}\:{d}\:\left({or}\:{s}\:{in}\:{my}\:{workings}\right),\:{then}\:{the} \\ $$$${sum}\:{of}\:{the}\:{distances}\:{between}\:{the} \\ $$$${collisions}\:{is}\:\mathrm{8}{d}\:\left({or}\:\mathrm{8}{s}\:{in}\:{my}\:{workings}\right). \\ $$

Commented by Tawa11 last updated on 06/Jan/22

Yes sir. Thanks for your time.

$$\mathrm{Yes}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com