Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 159911 by amin96 last updated on 22/Nov/21

Answered by mr W last updated on 22/Nov/21

Commented by mr W last updated on 22/Nov/21

assume ABCD is square with side  length a.  ED=a tan α  α=(π/6)−θ  AE=a(1−tan α)  sin (θ/2)=((r_1 −r_2 )/(r_1 +r_2 ))=((2r_1 )/(r_1 +r_2 ))−1  ⇒r_1 +r_2 =((2r_1 )/(1+sin (θ/2)))  r_1 +r_2 +(r_1 +r_2 )cos (θ/2)=a  (r_1 +r_2 )(1+cos (θ/2))=a  ((2r_1 )/(1+sin (θ/2)))(1+cos (θ/2))=a  ⇒(r_1 /a)=((1+sin (θ/2))/(2(1+cos (θ/2))))  AE=r_1 +(r_1 /(tan ((π/4)−(θ/2))))=a(1−tan α)  (r_1 /a)(1+(1/(tan ((π/4)−(θ/2)))))=1−tan ((π/6)−θ)  ((1+sin (θ/2))/(2(1+cos (θ/2))))(1+(1/(tan ((π/4)−(θ/2)))))=1−tan ((π/6)−θ)    (((1+sin (θ/2))cos (θ/2))/((1+cos (θ/2))(cos (θ/2)−sin (θ/2))))=1−tan ((π/6)−θ)  ⇒θ≈6.0796°  sin (θ/2)=(((r_1 /r_2 )−1)/((r_1 /r_2 )+1))  ⇒(r_1 /r_2 )=((1+sin (θ/2))/(1−sin (θ/2)))  ⇒(S_1 /S_2 )=((r_1 /r_2 ))^2 =(((1+sin (θ/2))/(1−sin (θ/2))))^2 ≈1.53

$${assume}\:{ABCD}\:{is}\:{square}\:{with}\:{side} \\ $$$${length}\:{a}. \\ $$$${ED}={a}\:\mathrm{tan}\:\alpha \\ $$$$\alpha=\frac{\pi}{\mathrm{6}}−\theta \\ $$$${AE}={a}\left(\mathrm{1}−\mathrm{tan}\:\alpha\right) \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{{r}_{\mathrm{1}} −{r}_{\mathrm{2}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{2}} }=\frac{\mathrm{2}{r}_{\mathrm{1}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{2}} }−\mathrm{1} \\ $$$$\Rightarrow{r}_{\mathrm{1}} +{r}_{\mathrm{2}} =\frac{\mathrm{2}{r}_{\mathrm{1}} }{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{1}} +{r}_{\mathrm{2}} +\left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)\mathrm{cos}\:\frac{\theta}{\mathrm{2}}={a} \\ $$$$\left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\right)={a} \\ $$$$\frac{\mathrm{2}{r}_{\mathrm{1}} }{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}\left(\mathrm{1}+\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\right)={a} \\ $$$$\Rightarrow\frac{{r}_{\mathrm{1}} }{{a}}=\frac{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\right)} \\ $$$${AE}={r}_{\mathrm{1}} +\frac{{r}_{\mathrm{1}} }{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}={a}\left(\mathrm{1}−\mathrm{tan}\:\alpha\right) \\ $$$$\frac{{r}_{\mathrm{1}} }{{a}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}\right)=\mathrm{1}−\mathrm{tan}\:\left(\frac{\pi}{\mathrm{6}}−\theta\right) \\ $$$$\frac{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\right)}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}\right)=\mathrm{1}−\mathrm{tan}\:\left(\frac{\pi}{\mathrm{6}}−\theta\right) \\ $$$$ \\ $$$$\frac{\left(\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}{\left(\mathrm{1}+\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\right)}=\mathrm{1}−\mathrm{tan}\:\left(\frac{\pi}{\mathrm{6}}−\theta\right) \\ $$$$\Rightarrow\theta\approx\mathrm{6}.\mathrm{0796}° \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }−\mathrm{1}}{\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }+\mathrm{1}} \\ $$$$\Rightarrow\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }=\frac{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{1}−\mathrm{sin}\:\frac{\theta}{\mathrm{2}}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\left(\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{1}−\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}\right)^{\mathrm{2}} \approx\mathrm{1}.\mathrm{53} \\ $$

Commented by Tawa11 last updated on 22/Nov/21

Weldone sir

$$\mathrm{Weldone}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 22/Nov/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com