Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 159755 by puissant last updated on 20/Nov/21

Commented by puissant last updated on 20/Nov/21

Show that (X/Y) = ((1+(√5))/2)

$${Show}\:{that}\:\frac{{X}}{{Y}}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Answered by mr W last updated on 21/Nov/21

say r=radius of circle, a=side length  of squares  r^2 =a^2 +((a/2))^2 =((5a^2 )/4)  ⇒r=(((√5)a)/2)  X=r−(a/2)=((((√5)−1)a)/2)  Y=a−X=(((3−(√5))a)/2)  (X/Y)=(((√5)−1)/(3−(√5)))=((((√5)−1)(3+(√5)))/4)=(((√5)+1)/( 2))

$${say}\:{r}={radius}\:{of}\:{circle},\:{a}={side}\:{length} \\ $$$${of}\:{squares} \\ $$$${r}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{5}{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow{r}=\frac{\sqrt{\mathrm{5}}{a}}{\mathrm{2}} \\ $$$${X}={r}−\frac{{a}}{\mathrm{2}}=\frac{\left(\sqrt{\mathrm{5}}−\mathrm{1}\right){a}}{\mathrm{2}} \\ $$$${Y}={a}−{X}=\frac{\left(\mathrm{3}−\sqrt{\mathrm{5}}\right){a}}{\mathrm{2}} \\ $$$$\frac{{X}}{{Y}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{3}−\sqrt{\mathrm{5}}}=\frac{\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)}{\mathrm{4}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com