Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 159233 by mnjuly1970 last updated on 14/Nov/21

Answered by mindispower last updated on 16/Nov/21

A_(2n) =Σ_(k≥1) (1/((2k)^(2n) ))=(1/2^(2n) ).ζ(2n)  (((ζ(2n))/2^(2n) )/(2n(2n+1)))=−((ζ(2n))/(2^(2n) (2n+1)))+((ζ(2n))/(2^(2n) .(2n)))  Σ_(k≥1) ζ(2k)x^(2k) =−((πx)/2)cot(πx)+(1/2)  Σ_(k≥1) ((ζ(2k)x^(2k) )/(2k))=∫_0 ^x (−(π/2)cot(πx)+(1/(2x)))dx  =lim_(t→0) ∫_t ^x (−(π/2)cot(πx)+(1/(2x)))dx=  =lim_(t→0) ∫_t ^x (−(1/2)ln(sin(πx))+(1/2)ln(x))  (1/2)(ln((x/(sinπx)))−lim_(t→0) ln((t/(sin(πt))))  =ln((√(x/(sin(πx)))))+ln((√π))  Σ_(k≥1) ((ζ(2n))/(2^(2n) (2n)))=ln((√(1/2)))+ln((√π))  Σ_(n≥1) ((ζ(2n))/(2^(2n) (2n+1)))=2∫_0 ^(1/2) Σ_(n≥1) ζ(2n)x^(2n) dx  =2∫_0 ^(1/2) ((1/2)−(π/2)xcot(πx))dx=(1/2)−(1/π)∫_0 ^(π/2) ucot(u)du  =((1/2)+(1/π)∫_0 ^(π/2) ln(sin(u))du)=(1/2)+(1/π).−(π/2)ln(2)=(1/2)(1−ln(2))  S=(1/2)(ln(π)−ln(2))−(1/2)(1−ln(2))  =(1/2)(ln(π)−1)

$${A}_{\mathrm{2}{n}} =\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{2}{k}\right)^{\mathrm{2}{n}} }=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}} }.\zeta\left(\mathrm{2}{n}\right) \\ $$$$\frac{\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}} }}{\mathrm{2}{n}\left(\mathrm{2}{n}+\mathrm{1}\right)}=−\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}+\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}} .\left(\mathrm{2}{n}\right)} \\ $$$$\underset{{k}\geqslant\mathrm{1}} {\sum}\zeta\left(\mathrm{2}{k}\right){x}^{\mathrm{2}{k}} =−\frac{\pi{x}}{\mathrm{2}}{cot}\left(\pi{x}\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\zeta\left(\mathrm{2}{k}\right){x}^{\mathrm{2}{k}} }{\mathrm{2}{k}}=\int_{\mathrm{0}} ^{{x}} \left(−\frac{\pi}{\mathrm{2}}{cot}\left(\pi{x}\right)+\frac{\mathrm{1}}{\mathrm{2}{x}}\right){dx} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{t}} ^{{x}} \left(−\frac{\pi}{\mathrm{2}}{cot}\left(\pi{x}\right)+\frac{\mathrm{1}}{\mathrm{2}{x}}\right){dx}= \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{t}} ^{{x}} \left(−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({sin}\left(\pi{x}\right)\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}\right)\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\frac{{x}}{{sin}\pi{x}}\right)−\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}{ln}\left(\frac{{t}}{{sin}\left(\pi{t}\right)}\right)\right. \\ $$$$={ln}\left(\sqrt{\frac{{x}}{{sin}\left(\pi{x}\right)}}\right)+{ln}\left(\sqrt{\pi}\right) \\ $$$$\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}{n}\right)}={ln}\left(\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}\right)+{ln}\left(\sqrt{\pi}\right) \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \underset{{n}\geqslant\mathrm{1}} {\sum}\zeta\left(\mathrm{2}{n}\right){x}^{\mathrm{2}{n}} {dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}{xcot}\left(\pi{x}\right)\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ucot}\left({u}\right){du} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({u}\right)\right){du}\right)=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\pi}.−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{ln}\left(\mathrm{2}\right)\right) \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\pi\right)−{ln}\left(\mathrm{2}\right)\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{ln}\left(\mathrm{2}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\pi\right)−\mathrm{1}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 15/Nov/21

very nice sir power...thx alot

$${very}\:{nice}\:{sir}\:{power}...{thx}\:{alot} \\ $$

Commented by mindispower last updated on 15/Nov/21

withe pleasur sir

$${withe}\:{pleasur}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com