Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 158955 by mr W last updated on 11/Nov/21

Answered by mr W last updated on 15/Nov/21

let′s look at the general case with n  students into r schools. both students  (objects) and schools (boxes) are  distinct.  let′s say the school S_1  obtains n_1    students, the schools S_2  obtains n_2   students, etc.  n_1 +n_2 +n_3 +...+n_r =n  1) no restriction: n_1 ≥0, n_2 ≥0, etc.  2) each schools obtains at least one  student: n_1 ≥1, n_2 ≥1, etc.    to distribute n students into r schools  such that S_1  obtains n_1  students,  S_2  obtains n_2  students, etc. and  S_r  obtains n_r  students, there are  C_n_1  ^n C_n_2  ^(n−n_1 ) ...C_n_r  ^(n−n_1 −n_2 −...−n_(r−1) )  ways,  which is  ((n!)/(n!(n−n_1 )!))×(((n−n_1 )!)/(n_2 !(n−n_1 −n_2 )!))×...×(((n−n_1 −n_2 −...−n_(r−1) )!)/(n_r !0!)),  i.e. ((n!)/(n_1 !n_2 !n_3 !...n_r !)) ways.  using generating function method  we can see that  for case 1)  number of ways is the coef. of x^n  in  n!(1+(x/(1!))+(x^2 /(2!))+(x^3 /(3!))+...)^r   =n!(e^x )^r   =n!e^(rx)   =n!(1+((rx)/(1!))+((r^2 x^2 )/(2!))+((r^3 x^3 )/(3!))+...)  coef. of x^n  is n!×(r^n /(n!))=r^n .  that means there are r^n  ways to  distribute n students into r schools  without restriction.  for case 2)  number of ways is the coef. of x^n  in  n!((x/(1!))+(x^2 /(2!))+(x^3 /(3!))+...)^r   =n!(e^x −1)^r   =n!Σ_(k=0) ^r (−1)^k C_k ^r (e^x )^(r−k)   =n!Σ_(k=0) ^r {(−1)^k C_k ^r [1+(((r−k)x)/(1!))+(((r−k)^2 x^2 )/(2!))+...]}  the coef. of x^n  is  n!Σ_(k=0) ^r [(−1)^k C_k ^r (((r−k)^n )/(n!))]  =Σ_(k=0) ^r (−1)^k C_k ^r (r−k)^n   = r^n −C_1 ^r (r−1)^n +C_2 ^r (r−2)^n −...+(−1)^(r−1) C_(r−1) ^r

$${let}'{s}\:{look}\:{at}\:{the}\:{general}\:{case}\:{with}\:{n} \\ $$$${students}\:{into}\:{r}\:{schools}.\:{both}\:{students} \\ $$$$\left({objects}\right)\:{and}\:{schools}\:\left({boxes}\right)\:{are} \\ $$$${distinct}. \\ $$$${let}'{s}\:{say}\:{the}\:{school}\:{S}_{\mathrm{1}} \:{obtains}\:{n}_{\mathrm{1}} \: \\ $$$${students},\:{the}\:{schools}\:{S}_{\mathrm{2}} \:{obtains}\:{n}_{\mathrm{2}} \\ $$$${students},\:{etc}. \\ $$$${n}_{\mathrm{1}} +{n}_{\mathrm{2}} +{n}_{\mathrm{3}} +...+{n}_{{r}} ={n} \\ $$$$\left.\mathrm{1}\right)\:{no}\:{restriction}:\:{n}_{\mathrm{1}} \geqslant\mathrm{0},\:{n}_{\mathrm{2}} \geqslant\mathrm{0},\:{etc}. \\ $$$$\left.\mathrm{2}\right)\:{each}\:{schools}\:{obtains}\:{at}\:{least}\:{one} \\ $$$${student}:\:{n}_{\mathrm{1}} \geqslant\mathrm{1},\:{n}_{\mathrm{2}} \geqslant\mathrm{1},\:{etc}. \\ $$$$ \\ $$$${to}\:{distribute}\:{n}\:{students}\:{into}\:{r}\:{schools} \\ $$$${such}\:{that}\:{S}_{\mathrm{1}} \:{obtains}\:{n}_{\mathrm{1}} \:{students}, \\ $$$${S}_{\mathrm{2}} \:{obtains}\:{n}_{\mathrm{2}} \:{students},\:{etc}.\:{and} \\ $$$${S}_{{r}} \:{obtains}\:{n}_{{r}} \:{students},\:{there}\:{are} \\ $$$${C}_{{n}_{\mathrm{1}} } ^{{n}} {C}_{{n}_{\mathrm{2}} } ^{{n}−{n}_{\mathrm{1}} } ...{C}_{{n}_{{r}} } ^{{n}−{n}_{\mathrm{1}} −{n}_{\mathrm{2}} −...−{n}_{{r}−\mathrm{1}} } \:{ways}, \\ $$$${which}\:{is} \\ $$$$\frac{{n}!}{{n}!\left({n}−{n}_{\mathrm{1}} \right)!}×\frac{\left({n}−{n}_{\mathrm{1}} \right)!}{{n}_{\mathrm{2}} !\left({n}−{n}_{\mathrm{1}} −{n}_{\mathrm{2}} \right)!}×...×\frac{\left({n}−{n}_{\mathrm{1}} −{n}_{\mathrm{2}} −...−{n}_{{r}−\mathrm{1}} \right)!}{{n}_{{r}} !\mathrm{0}!}, \\ $$$${i}.{e}.\:\frac{{n}!}{{n}_{\mathrm{1}} !{n}_{\mathrm{2}} !{n}_{\mathrm{3}} !...{n}_{{r}} !}\:{ways}. \\ $$$${using}\:{generating}\:{function}\:{method} \\ $$$${we}\:{can}\:{see}\:{that} \\ $$$$\left.\underline{\boldsymbol{{for}}\:\boldsymbol{{case}}\:\mathrm{1}\right)} \\ $$$${number}\:{of}\:{ways}\:{is}\:{the}\:{coef}.\:{of}\:{x}^{{n}} \:{in} \\ $$$${n}!\left(\mathrm{1}+\frac{{x}}{\mathrm{1}!}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+...\right)^{{r}} \\ $$$$={n}!\left({e}^{{x}} \right)^{{r}} \\ $$$$={n}!{e}^{{rx}} \\ $$$$={n}!\left(\mathrm{1}+\frac{{rx}}{\mathrm{1}!}+\frac{{r}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{r}^{\mathrm{3}} {x}^{\mathrm{3}} }{\mathrm{3}!}+...\right) \\ $$$${coef}.\:{of}\:{x}^{{n}} \:{is}\:{n}!×\frac{{r}^{{n}} }{{n}!}={r}^{{n}} . \\ $$$${that}\:{means}\:{there}\:{are}\:{r}^{{n}} \:{ways}\:{to} \\ $$$${distribute}\:{n}\:{students}\:{into}\:{r}\:{schools} \\ $$$${without}\:{restriction}. \\ $$$$\left.\underline{\boldsymbol{{for}}\:\boldsymbol{{case}}\:\mathrm{2}\right)} \\ $$$${number}\:{of}\:{ways}\:{is}\:{the}\:{coef}.\:{of}\:{x}^{{n}} \:{in} \\ $$$${n}!\left(\frac{{x}}{\mathrm{1}!}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+...\right)^{{r}} \\ $$$$={n}!\left({e}^{{x}} −\mathrm{1}\right)^{{r}} \\ $$$$={n}!\underset{{k}=\mathrm{0}} {\overset{{r}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {C}_{{k}} ^{{r}} \left({e}^{{x}} \right)^{{r}−{k}} \\ $$$$={n}!\underset{{k}=\mathrm{0}} {\overset{{r}} {\sum}}\left\{\left(−\mathrm{1}\right)^{{k}} {C}_{{k}} ^{{r}} \left[\mathrm{1}+\frac{\left({r}−{k}\right){x}}{\mathrm{1}!}+\frac{\left({r}−{k}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}!}+...\right]\right\} \\ $$$${the}\:{coef}.\:{of}\:{x}^{{n}} \:{is} \\ $$$${n}!\underset{{k}=\mathrm{0}} {\overset{{r}} {\sum}}\left[\left(−\mathrm{1}\right)^{{k}} {C}_{{k}} ^{{r}} \frac{\left({r}−{k}\right)^{{n}} }{{n}!}\right] \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{r}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {C}_{{k}} ^{{r}} \left({r}−{k}\right)^{{n}} \\ $$$$=\:{r}^{{n}} −{C}_{\mathrm{1}} ^{{r}} \left({r}−\mathrm{1}\right)^{{n}} +{C}_{\mathrm{2}} ^{{r}} \left({r}−\mathrm{2}\right)^{{n}} −...+\left(−\mathrm{1}\right)^{{r}−\mathrm{1}} {C}_{{r}−\mathrm{1}} ^{{r}} \\ $$

Commented by Tawa11 last updated on 11/Nov/21

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 11/Nov/21

example: 10 students into 5 schools  n=10, r=5  1) no restriction  number of ways =5^(10) =9 765 625  2) at least one student in each school  number of ways is  5^(10) −4^(10) C_1 ^5 +3^(10) C_2 ^5 −2^(10) C_3 ^5 +C_4 ^5   =5^(10) −5×4^(10) +10×3^(10) −10×2^(10) +5  =5 103 000

$${example}:\:\mathrm{10}\:{students}\:{into}\:\mathrm{5}\:{schools} \\ $$$${n}=\mathrm{10},\:{r}=\mathrm{5} \\ $$$$\left.\mathrm{1}\right)\:{no}\:{restriction} \\ $$$${number}\:{of}\:{ways}\:=\mathrm{5}^{\mathrm{10}} =\mathrm{9}\:\mathrm{765}\:\mathrm{625} \\ $$$$\left.\mathrm{2}\right)\:{at}\:{least}\:{one}\:{student}\:{in}\:{each}\:{school} \\ $$$${number}\:{of}\:{ways}\:{is} \\ $$$$\mathrm{5}^{\mathrm{10}} −\mathrm{4}^{\mathrm{10}} {C}_{\mathrm{1}} ^{\mathrm{5}} +\mathrm{3}^{\mathrm{10}} {C}_{\mathrm{2}} ^{\mathrm{5}} −\mathrm{2}^{\mathrm{10}} {C}_{\mathrm{3}} ^{\mathrm{5}} +{C}_{\mathrm{4}} ^{\mathrm{5}} \\ $$$$=\mathrm{5}^{\mathrm{10}} −\mathrm{5}×\mathrm{4}^{\mathrm{10}} +\mathrm{10}×\mathrm{3}^{\mathrm{10}} −\mathrm{10}×\mathrm{2}^{\mathrm{10}} +\mathrm{5} \\ $$$$=\mathrm{5}\:\mathrm{103}\:\mathrm{000} \\ $$

Commented by otchereabdullai@gmail.com last updated on 12/Nov/21

more blessing prof!

$$\mathrm{more}\:\mathrm{blessing}\:\mathrm{prof}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com