Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 158017 by cortano last updated on 30/Oct/21

Commented by tounghoungko last updated on 31/Oct/21

lim_(x→0^( −) ) f(x)= lim_(x→0^( +) ) f(x)  ⇒lim_(x→0^( +) ) (x^(7/9) )^(k/(−3ln (5x^7 )+22)) = 9  ⇒lim_(x→0^( +) ) (x^((7k)/(−27ln (5x^7 )+198)) ) = 9  ⇒9 =e^(lim_(x→0^( +) ) (((7k ln x)/(198−189 ln 5−189 ln x))))   ⇒9 =e^(lim_(x→0^( +) ) ((((7k)/x)/(−((189)/x))))) = e^(−(k/(27)))   ⇒−(k/(27)) = ln (9)=2 ln (3)  ⇒k =−54 ln (3)=−59.3251

$$\underset{{x}\rightarrow\mathrm{0}^{\:−} } {\mathrm{lim}}{f}\left({x}\right)=\:\underset{{x}\rightarrow\mathrm{0}^{\:+} } {\mathrm{lim}}{f}\left({x}\right) \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}^{\:+} } {\mathrm{lim}}\left({x}^{\frac{\mathrm{7}}{\mathrm{9}}} \right)^{\frac{{k}}{−\mathrm{3ln}\:\left(\mathrm{5}{x}^{\mathrm{7}} \right)+\mathrm{22}}} =\:\mathrm{9} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}^{\:+} } {\mathrm{lim}}\left({x}^{\frac{\mathrm{7}{k}}{−\mathrm{27ln}\:\left(\mathrm{5}{x}^{\mathrm{7}} \right)+\mathrm{198}}} \right)\:=\:\mathrm{9} \\ $$$$\Rightarrow\mathrm{9}\:={e}^{\underset{{x}\rightarrow\mathrm{0}^{\:+} } {\mathrm{lim}}\left(\frac{\mathrm{7}{k}\:\mathrm{ln}\:{x}}{\mathrm{198}−\mathrm{189}\:\mathrm{ln}\:\mathrm{5}−\mathrm{189}\:\mathrm{ln}\:{x}}\right)} \\ $$$$\Rightarrow\mathrm{9}\:={e}^{\underset{{x}\rightarrow\mathrm{0}^{\:+} } {\mathrm{lim}}\left(\frac{\frac{\mathrm{7}{k}}{{x}}}{−\frac{\mathrm{189}}{{x}}}\right)} =\:{e}^{−\frac{{k}}{\mathrm{27}}} \\ $$$$\Rightarrow−\frac{{k}}{\mathrm{27}}\:=\:\mathrm{ln}\:\left(\mathrm{9}\right)=\mathrm{2}\:\mathrm{ln}\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow{k}\:=−\mathrm{54}\:\mathrm{ln}\:\left(\mathrm{3}\right)=−\mathrm{59}.\mathrm{3251} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com