Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15642 by mrW1 last updated on 12/Jun/17

Answered by ajfour last updated on 12/Jun/17

  Required Area=S   let O be origin.   A(a,0) ; B(0,b) ; C(−c,0) ;   D(0,−d) ; E(a+p, −d−q)    ((q+d)/p)=(b/a)   ,     ((p+a)/q)=(c/d)  ⇒ aq+ad=bp              ...(i)        dp+ad=cq              ...(ii)  or      acq+adc=bpc  and             adp+a^2 d=acq  adding:   adc+adp+a^2 d=bpc              p(bc−ad)=ad(c−a)               p=((ad(c+a))/(bc−ad))         ...(iii)      (i)−(ii) gives:                aq−dp=bp−cq  or         q(a+c)=p(b+d)            q=(((b+d)/(a+c)))p  substituting for           p=((ad(c+a))/(bc−ad)) ;  q=((ad(b+d))/(bc−ad))   Now,   S+((p(d+q))/2)+((q(a+p))/2)                                    =(a+p)(d+q)  ⇒  2S+dp+pq+aq+pq                  =2ad+2aq+2dp+2pq  or  S= (1/2)(aq+dp+2ad)  S= (1/2)[((a^2 d(b+d))/(bc−ad))+((ad^2 (c+a))/(bc−ad))+2ad]  =((ad)/(2(bc−ad)))(ab+ad+cd+ad+2bc−2ad)     S=((ad)/(2(bc−ad)))(ab+2bc+cd)       (c/a)=((Area(ΔBOC))/(Area(ΔAOB))) = 2        (d/b)=((Area(ΔCOD))/(Area(ΔBOC))) =(3/2)  ⇒  ((ad)/(bc))=(((a/c))/((b/d)))=(((1/2))/((2/3)))=(3/4)         ad= (3/4)(bc)   from areas    ((ab)/2)=1  ⇒  ab=2                ((bc)/2)=2   ⇒  bc=4                ((cd)/2)=3   ⇒  cd=6     and as  ad=(3/4)(bc)  ⇒                  ad=(3/4)×4=3  substituting for these in  expression obtained for S,      S=((ad)/(2(bc−ad)))(ab+2bc+cd)        =(3/(2(4−3)))×(2+8+6)     S=24 sq.units .

$$\:\:{Required}\:{Area}={S} \\ $$$$\:{let}\:{O}\:{be}\:{origin}. \\ $$$$\:{A}\left({a},\mathrm{0}\right)\:;\:{B}\left(\mathrm{0},{b}\right)\:;\:{C}\left(−{c},\mathrm{0}\right)\:; \\ $$$$\:{D}\left(\mathrm{0},−{d}\right)\:;\:{E}\left({a}+{p},\:−{d}−{q}\right) \\ $$$$\:\:\frac{{q}+{d}}{{p}}=\frac{{b}}{{a}}\:\:\:,\:\:\:\:\:\frac{{p}+{a}}{{q}}=\frac{{c}}{{d}} \\ $$$$\Rightarrow\:{aq}+{ad}={bp}\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left({i}\right) \\ $$$$\:\:\:\:\:\:{dp}+{ad}={cq}\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left({ii}\right) \\ $$$${or}\:\:\:\:\:\:{acq}+{adc}={bpc}\:\:{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{adp}+{a}^{\mathrm{2}} {d}={acq} \\ $$$${adding}:\:\:\:{adc}+{adp}+{a}^{\mathrm{2}} {d}={bpc} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{p}\left({bc}−{ad}\right)={ad}\left({c}−{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{p}=\frac{{ad}\left({c}+{a}\right)}{{bc}−{ad}}\:\:\:\:\:\:\:\:\:...\left({iii}\right) \\ $$$$\:\:\:\:\left({i}\right)−\left({ii}\right)\:{gives}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{aq}−{dp}={bp}−{cq} \\ $$$${or}\:\:\:\:\:\:\:\:\:{q}\left({a}+{c}\right)={p}\left({b}+{d}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{q}=\left(\frac{{b}+{d}}{{a}+{c}}\right){p} \\ $$$${substituting}\:{for}\: \\ $$$$\:\:\:\:\:\:\:\:{p}=\frac{{ad}\left({c}+{a}\right)}{{bc}−{ad}}\:;\:\:{q}=\frac{{ad}\left({b}+{d}\right)}{{bc}−{ad}} \\ $$$$\:{Now},\:\:\:{S}+\frac{{p}\left({d}+{q}\right)}{\mathrm{2}}+\frac{{q}\left({a}+{p}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({a}+{p}\right)\left({d}+{q}\right) \\ $$$$\Rightarrow\:\:\mathrm{2}{S}+{dp}+{pq}+{aq}+{pq} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{ad}+\mathrm{2}{aq}+\mathrm{2}{dp}+\mathrm{2}{pq} \\ $$$${or}\:\:{S}=\:\frac{\mathrm{1}}{\mathrm{2}}\left({aq}+{dp}+\mathrm{2}{ad}\right) \\ $$$${S}=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{a}^{\mathrm{2}} {d}\left({b}+{d}\right)}{{bc}−{ad}}+\frac{{ad}^{\mathrm{2}} \left({c}+{a}\right)}{{bc}−{ad}}+\mathrm{2}{ad}\right] \\ $$$$=\frac{{ad}}{\mathrm{2}\left({bc}−{ad}\right)}\left({ab}+{ad}+{cd}+{ad}+\mathrm{2}{bc}−\mathrm{2}{ad}\right) \\ $$$$\:\:\:{S}=\frac{{ad}}{\mathrm{2}\left({bc}−{ad}\right)}\left({ab}+\mathrm{2}{bc}+{cd}\right) \\ $$$$\:\:\:\:\:\frac{{c}}{{a}}=\frac{{Area}\left(\Delta{BOC}\right)}{{Area}\left(\Delta{AOB}\right)}\:=\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\frac{{d}}{{b}}=\frac{{Area}\left(\Delta{COD}\right)}{{Area}\left(\Delta{BOC}\right)}\:=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\frac{{ad}}{{bc}}=\frac{\left({a}/{c}\right)}{\left({b}/{d}\right)}=\frac{\left(\mathrm{1}/\mathrm{2}\right)}{\left(\mathrm{2}/\mathrm{3}\right)}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{ad}=\:\frac{\mathrm{3}}{\mathrm{4}}\left({bc}\right) \\ $$$$\:{from}\:{areas}\:\:\:\:\frac{{ab}}{\mathrm{2}}=\mathrm{1}\:\:\Rightarrow\:\:{ab}=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{bc}}{\mathrm{2}}=\mathrm{2}\:\:\:\Rightarrow\:\:{bc}=\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{cd}}{\mathrm{2}}=\mathrm{3}\:\:\:\Rightarrow\:\:{cd}=\mathrm{6} \\ $$$$\:\:\:{and}\:{as}\:\:{ad}=\frac{\mathrm{3}}{\mathrm{4}}\left({bc}\right)\:\:\Rightarrow\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ad}=\frac{\mathrm{3}}{\mathrm{4}}×\mathrm{4}=\mathrm{3} \\ $$$${substituting}\:{for}\:{these}\:{in} \\ $$$${expression}\:{obtained}\:{for}\:{S},\: \\ $$$$\:\:\:{S}=\frac{{ad}}{\mathrm{2}\left({bc}−{ad}\right)}\left({ab}+\mathrm{2}{bc}+{cd}\right) \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{2}\left(\mathrm{4}−\mathrm{3}\right)}×\left(\mathrm{2}+\mathrm{8}+\mathrm{6}\right) \\ $$$$\:\:\:{S}=\mathrm{24}\:{sq}.{units}\:.\: \\ $$

Commented by mrW1 last updated on 12/Jun/17

24 is correct!

$$\mathrm{24}\:\mathrm{is}\:\mathrm{correct}! \\ $$

Commented by ajfour last updated on 23/May/18

thanks Sir. What a nice question,  Sir, where do you get them from?

$${thanks}\:{Sir}.\:{What}\:{a}\:{nice}\:{question}, \\ $$$${Sir},\:{where}\:{do}\:{you}\:{get}\:{them}\:{from}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com