Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 15485 by tawa tawa last updated on 11/Jun/17

Answered by mrW1 last updated on 11/Jun/17

Fcos α≥μ(mg−Fsin α)  F(cos α+μsin α)≥μmg  F≥(μ/(cos α+μsin α))mg  a) α=0  F≥0.45×8×10=36 N    b) α=60°  F≥((0.45)/(cos 60°+0.45×sin 60°))×8×10=0.51×80=40.5 N    c) α=−60°  F≥((0.45)/(cos 60°−0.45×sin 60°))×8×10=4.08×80=326.4 N    Find the best angle α such that F=min.  when cos α+μsin α is maximum  cos α+μsin α =(√(1+μ^2 ))((1/(√(1+μ^2 )))cos α+(μ/(√(1+μ^2 )))sin α)   =(√(1+μ^2 ))(cos θcos α+sin θsin α)   =(√(1+μ^2 )) cos (α−θ)    F is mininal when  α=θ=cos^(−1)  (1/(√(1+μ^2 )))=24.2°  F_(min) =(μ/(√(1+μ^2 )))×mg=((0.45)/(√(1+0.45^2 )))×8×10=32.8 N

$$\mathrm{Fcos}\:\alpha\geqslant\mu\left(\mathrm{mg}−\mathrm{Fsin}\:\alpha\right) \\ $$$$\mathrm{F}\left(\mathrm{cos}\:\alpha+\mu\mathrm{sin}\:\alpha\right)\geqslant\mu\mathrm{mg} \\ $$$$\mathrm{F}\geqslant\frac{\mu}{\mathrm{cos}\:\alpha+\mu\mathrm{sin}\:\alpha}\mathrm{mg} \\ $$$$\left.\mathrm{a}\right)\:\alpha=\mathrm{0} \\ $$$$\mathrm{F}\geqslant\mathrm{0}.\mathrm{45}×\mathrm{8}×\mathrm{10}=\mathrm{36}\:\mathrm{N} \\ $$$$ \\ $$$$\left.\mathrm{b}\right)\:\alpha=\mathrm{60}° \\ $$$$\mathrm{F}\geqslant\frac{\mathrm{0}.\mathrm{45}}{\mathrm{cos}\:\mathrm{60}°+\mathrm{0}.\mathrm{45}×\mathrm{sin}\:\mathrm{60}°}×\mathrm{8}×\mathrm{10}=\mathrm{0}.\mathrm{51}×\mathrm{80}=\mathrm{40}.\mathrm{5}\:\mathrm{N} \\ $$$$ \\ $$$$\left.\mathrm{c}\right)\:\alpha=−\mathrm{60}° \\ $$$$\mathrm{F}\geqslant\frac{\mathrm{0}.\mathrm{45}}{\mathrm{cos}\:\mathrm{60}°−\mathrm{0}.\mathrm{45}×\mathrm{sin}\:\mathrm{60}°}×\mathrm{8}×\mathrm{10}=\mathrm{4}.\mathrm{08}×\mathrm{80}=\mathrm{326}.\mathrm{4}\:\mathrm{N} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{best}\:\mathrm{angle}\:\alpha\:\mathrm{such}\:\mathrm{that}\:\mathrm{F}=\mathrm{min}. \\ $$$$\mathrm{when}\:\mathrm{cos}\:\alpha+\mu\mathrm{sin}\:\alpha\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\mathrm{cos}\:\alpha+\mu\mathrm{sin}\:\alpha\:=\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}\mathrm{cos}\:\alpha+\frac{\mu}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}\mathrm{sin}\:\alpha\right) \\ $$$$\:=\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\left(\mathrm{cos}\:\theta\mathrm{cos}\:\alpha+\mathrm{sin}\:\theta\mathrm{sin}\:\alpha\right) \\ $$$$\:=\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\:\mathrm{cos}\:\left(\alpha−\theta\right) \\ $$$$ \\ $$$$\mathrm{F}\:\mathrm{is}\:\mathrm{mininal}\:\mathrm{when} \\ $$$$\alpha=\theta=\mathrm{cos}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}=\mathrm{24}.\mathrm{2}° \\ $$$$\mathrm{F}_{\mathrm{min}} =\frac{\mu}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}×\mathrm{mg}=\frac{\mathrm{0}.\mathrm{45}}{\sqrt{\mathrm{1}+\mathrm{0}.\mathrm{45}^{\mathrm{2}} }}×\mathrm{8}×\mathrm{10}=\mathrm{32}.\mathrm{8}\:\mathrm{N} \\ $$

Commented by tawa tawa last updated on 11/Jun/17

Wow, God bless you sir. i appreciate your effort.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com