Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 154465 by Eric002 last updated on 18/Sep/21

Commented by Eric002 last updated on 18/Sep/21

a circle rolls inside a prabola.does the  center of that circle also trace a prabola?  fond its equation

$${a}\:{circle}\:{rolls}\:{inside}\:{a}\:{prabola}.{does}\:{the} \\ $$$${center}\:{of}\:{that}\:{circle}\:{also}\:{trace}\:{a}\:{prabola}? \\ $$$${fond}\:{its}\:{equation} \\ $$$$ \\ $$

Commented by MJS_new last updated on 18/Sep/21

parabola: y=ax^2   circle with radius r  p∈R  line:  { ((x=p−((2arp)/( (√(4a^2 p^2 +1)))))),((y=ap^2 +(r/( (√(4a^2 p^2 +1)))))) :}  the parabola has a minimum radius of (1/(2a))  if r>(1/(2a)) the line has a loop  anyway it′s never a parabola for r≠0

$$\mathrm{parabola}:\:{y}={ax}^{\mathrm{2}} \\ $$$$\mathrm{circle}\:\mathrm{with}\:\mathrm{radius}\:{r} \\ $$$${p}\in\mathbb{R} \\ $$$$\mathrm{line}:\:\begin{cases}{{x}={p}−\frac{\mathrm{2}{arp}}{\:\sqrt{\mathrm{4}{a}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{1}}}}\\{{y}={ap}^{\mathrm{2}} +\frac{{r}}{\:\sqrt{\mathrm{4}{a}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{1}}}}\end{cases} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{has}\:\mathrm{a}\:\mathrm{minimum}\:\mathrm{radius}\:\mathrm{of}\:\frac{\mathrm{1}}{\mathrm{2}{a}} \\ $$$$\mathrm{if}\:{r}>\frac{\mathrm{1}}{\mathrm{2}{a}}\:\mathrm{the}\:\mathrm{line}\:\mathrm{has}\:\mathrm{a}\:\mathrm{loop} \\ $$$$\mathrm{anyway}\:\mathrm{it}'\mathrm{s}\:\mathrm{never}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{for}\:{r}\neq\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com