Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154175 by daus last updated on 15/Sep/21

Commented by daus last updated on 15/Sep/21

integrate it

Answered by EDWIN88 last updated on 15/Sep/21

∫ ((32x)/((2x−1)(2x −3  )(2x−5))) dx   ((32x)/((2x−1)(2x−3)(2x−5)))=(a/(2x−1))+(b/(2x−3))+(c/(2x−5))   a=[((32x)/((2x−3)(2x−5)))] _(x=(1/2)) =((16)/((−2)(−4)))=2   b=[((32x)/((2x−1)(2x−5)))]_(x=(3/2)) =((48)/((2)(−2)))=−12   c= [((32x)/((2x−1)(2x−3)))]_(x=(5/2)) =((80)/((4)(2)))=10  I=∫ (2/(2x−1)) dx−∫ ((12)/(2x−3)) dx +∫ ((10)/(2x−5)) dx  I=ln ∣2x−1∣−6ln ∣2x−3∣+5ln ∣2x−5∣ + c  I=ln ∣((C(2x−1)(2x−5)^5 )/((2x−3)^6 ))∣ .

$$\int\:\frac{\mathrm{32}{x}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left(\mathrm{2}{x}\:−\mathrm{3}\:\:\right)\left(\mathrm{2}{x}−\mathrm{5}\right)}\:{dx} \\ $$$$\:\frac{\mathrm{32}{x}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left(\mathrm{2}{x}−\mathrm{3}\right)\left(\mathrm{2}{x}−\mathrm{5}\right)}=\frac{{a}}{\mathrm{2}{x}−\mathrm{1}}+\frac{{b}}{\mathrm{2}{x}−\mathrm{3}}+\frac{{c}}{\mathrm{2}{x}−\mathrm{5}} \\ $$$$\:{a}=\left[\frac{\mathrm{32}{x}}{\left(\mathrm{2}{x}−\mathrm{3}\right)\left(\mathrm{2}{x}−\mathrm{5}\right)}\right]\:_{{x}=\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{16}}{\left(−\mathrm{2}\right)\left(−\mathrm{4}\right)}=\mathrm{2} \\ $$$$\:{b}=\left[\frac{\mathrm{32}{x}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left(\mathrm{2}{x}−\mathrm{5}\right)}\right]_{{x}=\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{48}}{\left(\mathrm{2}\right)\left(−\mathrm{2}\right)}=−\mathrm{12} \\ $$$$\:{c}=\:\left[\frac{\mathrm{32}{x}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left(\mathrm{2}{x}−\mathrm{3}\right)}\right]_{{x}=\frac{\mathrm{5}}{\mathrm{2}}} =\frac{\mathrm{80}}{\left(\mathrm{4}\right)\left(\mathrm{2}\right)}=\mathrm{10} \\ $$$${I}=\int\:\frac{\mathrm{2}}{\mathrm{2}{x}−\mathrm{1}}\:{dx}−\int\:\frac{\mathrm{12}}{\mathrm{2}{x}−\mathrm{3}}\:{dx}\:+\int\:\frac{\mathrm{10}}{\mathrm{2}{x}−\mathrm{5}}\:{dx} \\ $$$${I}=\mathrm{ln}\:\mid\mathrm{2}{x}−\mathrm{1}\mid−\mathrm{6ln}\:\mid\mathrm{2}{x}−\mathrm{3}\mid+\mathrm{5ln}\:\mid\mathrm{2}{x}−\mathrm{5}\mid\:+\:{c} \\ $$$${I}=\mathrm{ln}\:\mid\frac{{C}\left(\mathrm{2}{x}−\mathrm{1}\right)\left(\mathrm{2}{x}−\mathrm{5}\right)^{\mathrm{5}} }{\left(\mathrm{2}{x}−\mathrm{3}\right)^{\mathrm{6}} }\mid\:. \\ $$

Commented by daus last updated on 15/Sep/21

appreaciated

Answered by peter frank last updated on 15/Sep/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com