Question Number 153905 by liberty last updated on 12/Sep/21 | ||
![]() | ||
Commented by MJS_new last updated on 12/Sep/21 | ||
![]() | ||
$$\mathrm{3}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}×\mathrm{5}}+\frac{\mathrm{1}}{\left(\mathrm{2}+\mathrm{3}\right)\left(\mathrm{5}+\mathrm{3}\right)}+\frac{\mathrm{1}}{\left(\mathrm{2}+\mathrm{2}×\mathrm{3}\right)\left(\mathrm{5}+\mathrm{2}×\mathrm{3}\right)}+...+\frac{\mathrm{1}}{\left(\mathrm{2}+\mathrm{11}×\mathrm{3}\right)\left(\mathrm{5}+\mathrm{11}×\mathrm{3}\right)}\right) \\ $$ | ||
Answered by MJS_new last updated on 12/Sep/21 | ||
![]() | ||
$$\frac{\mathrm{81}}{\mathrm{19}} \\ $$ | ||
Commented by liberty last updated on 12/Sep/21 | ||
![]() | ||
$${how}? \\ $$ | ||
Answered by som(math1967) last updated on 12/Sep/21 | ||
![]() | ||
$$\boldsymbol{{A}}=\mathrm{3}^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{2}×\mathrm{5}}\:+\frac{\mathrm{3}}{\mathrm{5}×\mathrm{8}}\:+\frac{\mathrm{3}}{\mathrm{8}×\mathrm{11}}\:...+\frac{\mathrm{3}}{\mathrm{35}×\mathrm{38}}\right) \\ $$$$\:=\mathrm{3}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{11}}+...\frac{\mathrm{1}}{\mathrm{35}}−\frac{\mathrm{1}}{\mathrm{38}}\right] \\ $$$$=\mathrm{3}^{\mathrm{2}} ×\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{38}}\right)=\mathrm{9}×\frac{\mathrm{18}}{\mathrm{38}}=\frac{\mathrm{81}}{\mathrm{19}} \\ $$ | ||
Commented by liberty last updated on 12/Sep/21 | ||
![]() | ||
$${wonderfull} \\ $$ | ||
Commented by puissant last updated on 12/Sep/21 | ||
Wow what a look | ||