Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 153757 by liberty last updated on 10/Sep/21

Commented by mr W last updated on 11/Sep/21

S_1 =S_2 =((85)/4)

$${S}_{\mathrm{1}} ={S}_{\mathrm{2}} =\frac{\mathrm{85}}{\mathrm{4}} \\ $$

Answered by mr W last updated on 11/Sep/21

Commented by mr W last updated on 11/Sep/21

((sin (45+α))/(sin α))=((10)/a)  (1/( (√2)))((1/(tan α))+1)=((10)/a)  ⇒(1/(tan α))=((10(√2))/a)−1  ((sin (45+β))/(sin β))=((10)/b)  (1/( (√2)))((1/(tan β))+1)=((10)/b)  ⇒(1/(tan β))=((10(√2))/b)−1  α+β=45°  tan (α+β)=1  ((tan α+tan β)/(1−tan α tan β))=1  tan α+tan β=1−tan α tan β  (1/(tan α))+(1/(tan β))=(1/(tan α))×(1/(tan β))−1  ((10(√2))/a)−1+((10(√2))/b)−1=(((10(√2))/a)−1)×(((10(√2))/b)−1)−1  ((10(√2))/a)+((10(√2))/b)−1=((100)/(ab))  ((10(√2)(a+b))/(ab))−1=((100)/(ab))  ab=15  ⇒a+b=((23(√2))/4)  a,b are roots of  x^2 −((23(√2))/4)x+15=0  ⇒a,b=(((23±7)(√2))/8)= { ((2(√2))),(((15(√2))/4)) :}  (1/(tan α))=((10(√2))/(2(√2)))−1=4 ⇒tan α=(1/4)  (1/(tan β))=((10(√2))/((15(√2))/4))=(5/( 3)) ⇒tan β=(3/5)  (c/a)=((sin 45)/(sin α)) ⇒c=((2(√2))/( (√2)×(1/( (√(17))))))=2(√(17))  (d/b)=((sin 45)/(sin β)) ⇒d=((15(√2))/( 4(√2)×(3/( (√(34))))))=((5(√(34)))/4)  S_1 =((cd sin 45°)/2)  =(1/(2(√2)))×2(√(17))×((5(√(34)))/4)=((85)/4)  AE=((10)/(cos β))=((10)/(5/( (√(34)))))=2(√(34))  AF=((10)/(cos α))=((10)/( (4/( (√(17))))))=((5(√(17)))/2)  S_1 +S_2 =((AE×AF×sin 45°)/2)  =(1/(2(√2)))×2(√(34))×((5(√(17)))/( 2))=((85)/2)  ⇒S_2 =((85)/2)−((85)/4)=((85)/4)=S_1

$$\frac{\mathrm{sin}\:\left(\mathrm{45}+\alpha\right)}{\mathrm{sin}\:\alpha}=\frac{\mathrm{10}}{{a}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}+\mathrm{1}\right)=\frac{\mathrm{10}}{{a}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{a}}−\mathrm{1} \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{45}+\beta\right)}{\mathrm{sin}\:\beta}=\frac{\mathrm{10}}{{b}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\beta}+\mathrm{1}\right)=\frac{\mathrm{10}}{{b}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\beta}=\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{b}}−\mathrm{1} \\ $$$$\alpha+\beta=\mathrm{45}° \\ $$$$\mathrm{tan}\:\left(\alpha+\beta\right)=\mathrm{1} \\ $$$$\frac{\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta}=\mathrm{1} \\ $$$$\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta=\mathrm{1}−\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}+\frac{\mathrm{1}}{\mathrm{tan}\:\beta}=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}×\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\mathrm{1} \\ $$$$\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{a}}−\mathrm{1}+\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{b}}−\mathrm{1}=\left(\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{a}}−\mathrm{1}\right)×\left(\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{b}}−\mathrm{1}\right)−\mathrm{1} \\ $$$$\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{a}}+\frac{\mathrm{10}\sqrt{\mathrm{2}}}{{b}}−\mathrm{1}=\frac{\mathrm{100}}{{ab}} \\ $$$$\frac{\mathrm{10}\sqrt{\mathrm{2}}\left({a}+{b}\right)}{{ab}}−\mathrm{1}=\frac{\mathrm{100}}{{ab}} \\ $$$${ab}=\mathrm{15} \\ $$$$\Rightarrow{a}+{b}=\frac{\mathrm{23}\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$${a},{b}\:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{23}\sqrt{\mathrm{2}}}{\mathrm{4}}{x}+\mathrm{15}=\mathrm{0} \\ $$$$\Rightarrow{a},{b}=\frac{\left(\mathrm{23}\pm\mathrm{7}\right)\sqrt{\mathrm{2}}}{\mathrm{8}}=\begin{cases}{\mathrm{2}\sqrt{\mathrm{2}}}\\{\frac{\mathrm{15}\sqrt{\mathrm{2}}}{\mathrm{4}}}\end{cases} \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\frac{\mathrm{10}\sqrt{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{2}}}−\mathrm{1}=\mathrm{4}\:\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\beta}=\frac{\mathrm{10}\sqrt{\mathrm{2}}}{\frac{\mathrm{15}\sqrt{\mathrm{2}}}{\mathrm{4}}}=\frac{\mathrm{5}}{\:\mathrm{3}}\:\Rightarrow\mathrm{tan}\:\beta=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\frac{{c}}{{a}}=\frac{\mathrm{sin}\:\mathrm{45}}{\mathrm{sin}\:\alpha}\:\Rightarrow{c}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{17}}}}=\mathrm{2}\sqrt{\mathrm{17}} \\ $$$$\frac{{d}}{{b}}=\frac{\mathrm{sin}\:\mathrm{45}}{\mathrm{sin}\:\beta}\:\Rightarrow{d}=\frac{\mathrm{15}\sqrt{\mathrm{2}}}{\:\mathrm{4}\sqrt{\mathrm{2}}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{34}}}}=\frac{\mathrm{5}\sqrt{\mathrm{34}}}{\mathrm{4}} \\ $$$${S}_{\mathrm{1}} =\frac{{cd}\:\mathrm{sin}\:\mathrm{45}°}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\mathrm{2}\sqrt{\mathrm{17}}×\frac{\mathrm{5}\sqrt{\mathrm{34}}}{\mathrm{4}}=\frac{\mathrm{85}}{\mathrm{4}} \\ $$$${AE}=\frac{\mathrm{10}}{\mathrm{cos}\:\beta}=\frac{\mathrm{10}}{\frac{\mathrm{5}}{\:\sqrt{\mathrm{34}}}}=\mathrm{2}\sqrt{\mathrm{34}} \\ $$$${AF}=\frac{\mathrm{10}}{\mathrm{cos}\:\alpha}=\frac{\mathrm{10}}{\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}}}=\frac{\mathrm{5}\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$${S}_{\mathrm{1}} +{S}_{\mathrm{2}} =\frac{{AE}×{AF}×\mathrm{sin}\:\mathrm{45}°}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\mathrm{2}\sqrt{\mathrm{34}}×\frac{\mathrm{5}\sqrt{\mathrm{17}}}{\:\mathrm{2}}=\frac{\mathrm{85}}{\mathrm{2}} \\ $$$$\Rightarrow{S}_{\mathrm{2}} =\frac{\mathrm{85}}{\mathrm{2}}−\frac{\mathrm{85}}{\mathrm{4}}=\frac{\mathrm{85}}{\mathrm{4}}={S}_{\mathrm{1}} \\ $$

Commented by Ari last updated on 11/Sep/21

Mr.W. always, the ratio S2/S1 eshte 1 if dhe angle 0f triangle is 45 grade?

Commented by mr W last updated on 11/Sep/21

yes, S_1 =S_2  is always true.

$${yes},\:{S}_{\mathrm{1}} ={S}_{\mathrm{2}} \:{is}\:{always}\:{true}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com