Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 153638 by mathdanisur last updated on 08/Sep/21

Commented by EDWIN88 last updated on 09/Sep/21

b×c=12a  ⇒a^2 =b^2 +c^2   ⇒a^2 =(b+c)^2 −24a  ⇒a^2 +24a−(b+c)^2 =0  ⇒(a+12)^2 =144+(b+c)^2   ⇒(a+12+b+c)(a+12−b−c)=144  ⇒(a+b+c+12)(a−b−c+12)=144  factor 144={1,2,3,4,6,8,9,12,16,18,24,36,48,72,144}  a+b+c+12>0 it follows that  case(1)a+b+c+12=16 ∧a−b−c+12=9  ⇒a+b+c=4∧a−b−c=−3 (no solution)  case(2)a+b+c+12=18 ∧a−b−c+12=8  ⇒a+b+c=6∧a−b−c=−4 (no solution)  case(3)a+b+c+12=24∧a−b−c+12=6  ⇒a+b+c=12∧a−b−c=−6  ⇒a=3 ∧ { ((b+c=9)),((b×c=36)) :}⇒no solution  case(4)a+b+c+12=36∧a−b−c+12=4  ⇒a+b+c=24∧a−b−c=−8  ⇒a=8∧ { ((b+c=16)),((b×c=96)) :}⇒no solution  case(5)a+b+c+12=48∧a−b−c+12=3  ⇒a+b+c=36∧a−b−c=−9  ⇒no solution  case(6)a+b+c+12=72∧a−b−c+12=2  ⇒a+b+c=60∧a−b−c=−10  ⇒a=25→ { ((b+c=35)),((b×c=300)) :}  ⇒c=35−b⇒b×(35−b)=300  ⇒b^2 −35b+300=0  ⇒b=((35+5)/2)=20 ∧c=15  solution (a,b,c)= { (((25,20,15))),(((25,15,20))) :}  case(7)a+b+c+12=144∧a−b−c+12=1  ⇒a+b+c=132∧a−b−c=−11  no solution

$${b}×{c}=\mathrm{12}{a} \\ $$$$\Rightarrow{a}^{\mathrm{2}} ={b}^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\left({b}+{c}\right)^{\mathrm{2}} −\mathrm{24}{a} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\mathrm{24}{a}−\left({b}+{c}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\left({a}+\mathrm{12}\right)^{\mathrm{2}} =\mathrm{144}+\left({b}+{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left({a}+\mathrm{12}+{b}+{c}\right)\left({a}+\mathrm{12}−{b}−{c}\right)=\mathrm{144} \\ $$$$\Rightarrow\left({a}+{b}+{c}+\mathrm{12}\right)\left({a}−{b}−{c}+\mathrm{12}\right)=\mathrm{144} \\ $$$${factor}\:\mathrm{144}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{8},\mathrm{9},\mathrm{12},\mathrm{16},\mathrm{18},\mathrm{24},\mathrm{36},\mathrm{48},\mathrm{72},\mathrm{144}\right\} \\ $$$${a}+{b}+{c}+\mathrm{12}>\mathrm{0}\:{it}\:{follows}\:{that} \\ $$$${case}\left(\mathrm{1}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{16}\:\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{9} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{4}\wedge{a}−{b}−{c}=−\mathrm{3}\:\left({no}\:{solution}\right) \\ $$$${case}\left(\mathrm{2}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{18}\:\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{8} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{6}\wedge{a}−{b}−{c}=−\mathrm{4}\:\left({no}\:{solution}\right) \\ $$$${case}\left(\mathrm{3}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{24}\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{6} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{12}\wedge{a}−{b}−{c}=−\mathrm{6} \\ $$$$\Rightarrow{a}=\mathrm{3}\:\wedge\begin{cases}{{b}+{c}=\mathrm{9}}\\{{b}×{c}=\mathrm{36}}\end{cases}\Rightarrow{no}\:{solution} \\ $$$${case}\left(\mathrm{4}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{36}\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{4} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{24}\wedge{a}−{b}−{c}=−\mathrm{8} \\ $$$$\Rightarrow{a}=\mathrm{8}\wedge\begin{cases}{{b}+{c}=\mathrm{16}}\\{{b}×{c}=\mathrm{96}}\end{cases}\Rightarrow{no}\:{solution} \\ $$$${case}\left(\mathrm{5}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{48}\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{3} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{36}\wedge{a}−{b}−{c}=−\mathrm{9} \\ $$$$\Rightarrow{no}\:{solution} \\ $$$${case}\left(\mathrm{6}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{72}\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{2} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{60}\wedge{a}−{b}−{c}=−\mathrm{10} \\ $$$$\Rightarrow{a}=\mathrm{25}\rightarrow\begin{cases}{{b}+{c}=\mathrm{35}}\\{{b}×{c}=\mathrm{300}}\end{cases} \\ $$$$\Rightarrow{c}=\mathrm{35}−{b}\Rightarrow{b}×\left(\mathrm{35}−{b}\right)=\mathrm{300} \\ $$$$\Rightarrow{b}^{\mathrm{2}} −\mathrm{35}{b}+\mathrm{300}=\mathrm{0} \\ $$$$\Rightarrow{b}=\frac{\mathrm{35}+\mathrm{5}}{\mathrm{2}}=\mathrm{20}\:\wedge{c}=\mathrm{15} \\ $$$${solution}\:\left({a},{b},{c}\right)=\begin{cases}{\left(\mathrm{25},\mathrm{20},\mathrm{15}\right)}\\{\left(\mathrm{25},\mathrm{15},\mathrm{20}\right)}\end{cases} \\ $$$${case}\left(\mathrm{7}\right){a}+{b}+{c}+\mathrm{12}=\mathrm{144}\wedge{a}−{b}−{c}+\mathrm{12}=\mathrm{1} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{132}\wedge{a}−{b}−{c}=−\mathrm{11} \\ $$$${no}\:{solution} \\ $$

Commented by mathdanisur last updated on 11/Sep/21

thanks ser nice

$$\mathrm{thanks}\:\mathrm{ser}\:\mathrm{nice} \\ $$

Answered by MJS_new last updated on 09/Sep/21

a^2 =b^2 +c^2   a=((bc)/(12))  ⇒ b^2 c^2 =144(b^2 +c^2 )  c^2 =((144b^2 )/(b^2 −144)) ⇒ b>12∧c>12 (symmetry))  b=15∧c=20 ∨ b=20∧c=15 ⇒ a=25

$${a}^{\mathrm{2}} ={b}^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$${a}=\frac{{bc}}{\mathrm{12}} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} {c}^{\mathrm{2}} =\mathrm{144}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\left.{c}^{\mathrm{2}} =\frac{\mathrm{144}{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} −\mathrm{144}}\:\Rightarrow\:{b}>\mathrm{12}\wedge{c}>\mathrm{12}\:\left(\mathrm{symmetry}\right)\right) \\ $$$${b}=\mathrm{15}\wedge{c}=\mathrm{20}\:\vee\:{b}=\mathrm{20}\wedge{c}=\mathrm{15}\:\Rightarrow\:{a}=\mathrm{25} \\ $$

Commented by Rasheed.Sindhi last updated on 09/Sep/21

Sir , the given is:  ((b∗c)/a)=12⇒((b×c)/a)=12⇒a=(1/(12))(b×c)

$$\mathcal{S}{ir}\:,\:{the}\:{given}\:{is}: \\ $$$$\frac{{b}\ast{c}}{{a}}=\mathrm{12}\Rightarrow\frac{{b}×{c}}{{a}}=\mathrm{12}\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{12}}\left({b}×{c}\right) \\ $$

Commented by MJS_new last updated on 09/Sep/21

ok. my eyes...

$$\mathrm{ok}.\:\mathrm{my}\:\mathrm{eyes}... \\ $$

Commented by MJS_new last updated on 09/Sep/21

corrected my post. thank you!

$$\mathrm{corrected}\:\mathrm{my}\:\mathrm{post}.\:\mathrm{thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com