Question Number 153611 by saly last updated on 08/Sep/21 | ||
Answered by Ar Brandon last updated on 08/Sep/21 | ||
$${A}=\int\frac{\mathrm{3sin}{x}+\mathrm{2cos}{x}}{\mathrm{3cos}{x}+\mathrm{2sin}{x}}{dx} \\ $$$$\:\:\:\:=\int\frac{\mathrm{2cos}{x}−\mathrm{3sin}{x}}{\mathrm{2sin}{x}+\mathrm{3cos}{x}}{dx}+\mathrm{6}\int\frac{\mathrm{sin}{x}}{\mathrm{2sin}{x}+\mathrm{3cos}{x}}{dx} \\ $$$$\:\:\:\:=\mathrm{ln}\mid\mathrm{2sin}{x}+\mathrm{3cos}{x}\mid+\mathrm{6}\int\frac{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\centerdot\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:=\mathrm{ln}\mid\mathrm{2sin}{x}+\mathrm{3cos}{x}\mid+\mathrm{6}\int\frac{\mathrm{4}{tdt}}{\left(\mathrm{3}+\mathrm{4}{t}−\mathrm{3}{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$\mathrm{You}\:\mathrm{may}\:\mathrm{proceed}\:\mathrm{with}\:\mathrm{the}\:\mathrm{decomposition} \\ $$$$\frac{\mathrm{4}{t}}{\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}{t}−\mathrm{3}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{at}+{b}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}{t}−\mathrm{3}}+\frac{{ct}+{d}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$ | ||
Commented by saly last updated on 08/Sep/21 | ||
$$\:\:{Thank}\:{you} \\ $$$$\:\:\:{But}\:{in}\:{number}\:\:{B}.{C}.{D}\:? \\ $$ | ||
Answered by Ar Brandon last updated on 08/Sep/21 | ||
$${B}=\int\mathrm{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$$$\begin{cases}{{u}\left({x}\right)=\mathrm{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}\\{{v}'\left({x}\right)=\mathrm{1}}\end{cases}\Rightarrow\begin{cases}{{u}'\left({x}\right)=−\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\centerdot\frac{\mathrm{1}}{\mathrm{2}−{x}^{\mathrm{2}} }}\\{{v}\left({x}\right)={x}}\end{cases} \\ $$$${B}={x}\mathrm{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)+\int\frac{{x}^{\mathrm{2}} {dx}}{\left(\mathrm{2}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\:\:\:\:={x}\mathrm{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)−\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}+\mathrm{2}\int\frac{{dx}}{\left(\mathrm{2}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\:\:\:\:={x}\mathrm{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)−\mathrm{sin}^{−\mathrm{1}} \left({x}\right)+\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{3}} \left(\frac{\mathrm{2}}{{x}^{\mathrm{2}} }−\mathrm{1}\right)\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{1}}} \\ $$$${I}=\int\frac{{dx}}{{x}^{\mathrm{3}} \left(\frac{\mathrm{2}}{{x}^{\mathrm{2}} }−\mathrm{1}\right)\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{1}}},\:{u}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\Rightarrow{du}=−\frac{\mathrm{2}}{{x}^{\mathrm{3}} }{dx} \\ $$$$\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{du}}{\left(\mathrm{2}{u}−\mathrm{1}\right)\sqrt{{u}−\mathrm{1}}},\:{t}^{\mathrm{2}} ={u}−\mathrm{1}\Rightarrow\mathrm{2}{t}={du} \\ $$$$\:\:=−\int\frac{{tdt}}{\left(\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}\right){t}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}{t}\right)+{C} \\ $$$${B}={x}\mathrm{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)−\mathrm{sin}^{−\mathrm{1}} \left({x}\right)−\sqrt{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}\centerdot\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\right)+{C} \\ $$ | ||
Answered by Ar Brandon last updated on 08/Sep/21 | ||
$${C}=\int\frac{{dx}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{20}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{10}}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{dx}}{\:\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{6}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{arcsin}\left(\frac{{x}−\mathrm{2}}{\:\sqrt{\mathrm{6}}}\right)+{K},\:{K}\in\mathbb{R} \\ $$ | ||
Commented by saly last updated on 08/Sep/21 | ||
$$\:\:{Thank}\:\:{you}\:{very}\:{much} \\ $$ | ||
Commented by Ar Brandon last updated on 08/Sep/21 | ||
$$\mathrm{If}\:{D}\:\mathrm{was}\:\int\frac{{x}^{\mathrm{4}} {dx}}{\left({x}^{\mathrm{5}} +\mathrm{1}\right)\sqrt{\mathrm{5}−{x}^{\mathrm{5}} }}\:\mathrm{it}\:\mathrm{would}\:\mathrm{have}\:\mathrm{been} \\ $$$$\int\frac{{x}^{\mathrm{4}} {dx}}{\left({x}^{\mathrm{5}} +\mathrm{1}\right)\sqrt{\mathrm{5}−{x}^{\mathrm{5}} }},\:{u}={x}^{\mathrm{5}} \Rightarrow{du}=\mathrm{5}{x}^{\mathrm{4}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\int\frac{{du}}{\left({u}+\mathrm{1}\right)\sqrt{\mathrm{5}−{u}}},\:\mathrm{5}+{t}^{\mathrm{2}} ={u}\Rightarrow\mathrm{2}{tdt}={du} \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}\int\frac{{tdt}}{\left({t}^{\mathrm{2}} +\mathrm{6}\right){t}}=\frac{\mathrm{2}}{\mathrm{5}\sqrt{\mathrm{6}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{t}}{\:\sqrt{\mathrm{6}}}\right)+{C} \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{15}}\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{5}−{x}^{\mathrm{5}} }{\mathrm{6}}}\right)+{C} \\ $$ | ||
Commented by Ar Brandon last updated on 08/Sep/21 | ||
You're welcome | ||
Commented by puissant last updated on 08/Sep/21 | ||
sacré Brandon | ||
Commented by Ar Brandon last updated on 08/Sep/21 | ||
Bonsoir bro | ||