Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153537 by SANOGO last updated on 08/Sep/21

Answered by puissant last updated on 08/Sep/21

18)  on remarque d′abord que  x^x =1+xlnx+....+(((xlnx)^n )/(n!))(1+ε(x))  ε(x)→0 quand x→0  alors posons une suite U_k (x)=(((xlnx)^k )/(k!))  pour k∈N.  on remarque que chaque U_(k−1) est  ne^� gligeable devant U_k   alors lim_(x→∞) ((U_(k−1) /U_k ))=0  alors lim_(x→∞) (x^((x^(x−1) )) /x^((x^x )) ) = 0  19)  On remarque aussi que lim_(x→∞) (((x+1)^x )/x^(x+1) )=0

$$\left.\mathrm{18}\right) \\ $$$${on}\:{remarque}\:{d}'{abord}\:{que} \\ $$$${x}^{{x}} =\mathrm{1}+{xlnx}+....+\frac{\left({xlnx}\right)^{{n}} }{{n}!}\left(\mathrm{1}+\varepsilon\left({x}\right)\right) \\ $$$$\varepsilon\left({x}\right)\rightarrow\mathrm{0}\:{quand}\:{x}\rightarrow\mathrm{0} \\ $$$${alors}\:{posons}\:{une}\:{suite}\:{U}_{{k}} \left({x}\right)=\frac{\left({xlnx}\right)^{{k}} }{{k}!} \\ $$$${pour}\:{k}\in\mathbb{N}. \\ $$$${on}\:{remarque}\:{que}\:{chaque}\:{U}_{{k}−\mathrm{1}} {est} \\ $$$${n}\acute {{e}gligeable}\:{devant}\:{U}_{{k}} \\ $$$${alors}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{U}_{{k}−\mathrm{1}} }{{U}_{{k}} }\right)=\mathrm{0} \\ $$$${alors}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{x}^{\left({x}^{{x}−\mathrm{1}} \right)} }{{x}^{\left({x}^{{x}} \right)} }\:=\:\mathrm{0} \\ $$$$\left.\mathrm{19}\right) \\ $$$${On}\:{remarque}\:{aussi}\:{que}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left({x}+\mathrm{1}\right)^{{x}} }{{x}^{{x}+\mathrm{1}} }=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com