Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 15322 by tawa tawa last updated on 09/Jun/17

Commented by mrW1 last updated on 09/Jun/17

sin^2  x_k =(4/(2015))  cos^2  x_k =1−(4/(2015))=((2011)/(2015))  sin 2x_k =2(sin x_k cos x_k )=2(√((4×2011)/(2015^2 )))=((4(√(2011)))/(2015))  Σ_(k=1) ^(2015) sin 2x_k =2015×((4(√(2011)))/(2015))=4(√(2011))≈179.38    I believe this is the maximum.

$$\mathrm{sin}^{\mathrm{2}} \:\mathrm{x}_{\mathrm{k}} =\frac{\mathrm{4}}{\mathrm{2015}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{x}_{\mathrm{k}} =\mathrm{1}−\frac{\mathrm{4}}{\mathrm{2015}}=\frac{\mathrm{2011}}{\mathrm{2015}} \\ $$$$\mathrm{sin}\:\mathrm{2x}_{\mathrm{k}} =\mathrm{2}\left(\mathrm{sin}\:\mathrm{x}_{\mathrm{k}} \mathrm{cos}\:\mathrm{x}_{\mathrm{k}} \right)=\mathrm{2}\sqrt{\frac{\mathrm{4}×\mathrm{2011}}{\mathrm{2015}^{\mathrm{2}} }}=\frac{\mathrm{4}\sqrt{\mathrm{2011}}}{\mathrm{2015}} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2015}} {\sum}}\mathrm{sin}\:\mathrm{2x}_{\mathrm{k}} =\mathrm{2015}×\frac{\mathrm{4}\sqrt{\mathrm{2011}}}{\mathrm{2015}}=\mathrm{4}\sqrt{\mathrm{2011}}\approx\mathrm{179}.\mathrm{38} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{believe}\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}. \\ $$

Commented by tawa tawa last updated on 09/Jun/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by tawa tawa last updated on 09/Jun/17

i really appreciate the workings sir. God bless you sir.

$$\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{the}\:\mathrm{workings}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by tawa tawa last updated on 09/Jun/17

But sir,  Σ sin^2 x_k  = 4            (k ranging from 1 to 2015)  Does that means that  Σ sin^2 x_(k ) = (4/(2015))  ??,   How sir ?    Does that means,    x_1  = x_2  = ...... = x_(2015)   ? is a constant sequence.    Does that means ,  sin^2 x_1  = sin^2 x_2  = ... = sin^2 x_n  ?    please explain to me sir.

$$\mathrm{But}\:\mathrm{sir},\:\:\Sigma\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}_{\mathrm{k}} \:=\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{k}\:\mathrm{ranging}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{2015}\right) \\ $$$$\mathrm{Does}\:\mathrm{that}\:\mathrm{means}\:\mathrm{that}\:\:\Sigma\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}_{\mathrm{k}\:} =\:\frac{\mathrm{4}}{\mathrm{2015}}\:\:??,\:\:\:\mathrm{How}\:\mathrm{sir}\:? \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{that}\:\mathrm{means},\:\:\:\:\mathrm{x}_{\mathrm{1}} \:=\:\mathrm{x}_{\mathrm{2}} \:=\:......\:=\:\mathrm{x}_{\mathrm{2015}} \:\:?\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{sequence}. \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{that}\:\mathrm{means}\:,\:\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}_{\mathrm{1}} \:=\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}_{\mathrm{2}} \:=\:...\:=\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}_{\mathrm{n}} \:? \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{explain}\:\mathrm{to}\:\mathrm{me}\:\mathrm{sir}.\: \\ $$

Commented by mrW1 last updated on 09/Jun/17

Maximum or minimum occurs in  such symmetric cases when all  variables are equal. that means  x_1 =x_2 =...=x_k =...=x_(2015) =α  Σ_(k=1) ^(2015) sin^2  x_k =Σ_(k=1) ^(2015) sin^2  α=2015×sin^2  α=4  ⇒sin^2  x_k =sin^2  α=(4/(2015))  cos^2  x_k =cos^2  α=1−sin^2  α=1−(4/(2015))=((2011)/(2015))    Σ_(k=1) ^(2015) sin 2x_k =Σ_(k=1) ^(2015) sin 2α=2015×sin 2α  =2015×2×sin αcos α  =2015×2×(√(sin^2  α cos^2  α))  =2015×2×(√((4/(2015))×((2011)/(2015))))  =2015×2×((2(√(2011)))/(2015))  =4(√(2011))    note: what I did is not a strict proof,  though I believe it is correct.

$$\mathrm{Maximum}\:\mathrm{or}\:\mathrm{minimum}\:\mathrm{occurs}\:\mathrm{in} \\ $$$$\mathrm{such}\:\mathrm{symmetric}\:\mathrm{cases}\:\mathrm{when}\:\mathrm{all} \\ $$$$\mathrm{variables}\:\mathrm{are}\:\mathrm{equal}.\:\mathrm{that}\:\mathrm{means} \\ $$$$\mathrm{x}_{\mathrm{1}} =\mathrm{x}_{\mathrm{2}} =...=\mathrm{x}_{\mathrm{k}} =...=\mathrm{x}_{\mathrm{2015}} =\alpha \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2015}} {\sum}}\mathrm{sin}^{\mathrm{2}} \:\mathrm{x}_{\mathrm{k}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2015}} {\sum}}\mathrm{sin}^{\mathrm{2}} \:\alpha=\mathrm{2015}×\mathrm{sin}^{\mathrm{2}} \:\alpha=\mathrm{4} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \:\mathrm{x}_{\mathrm{k}} =\mathrm{sin}^{\mathrm{2}} \:\alpha=\frac{\mathrm{4}}{\mathrm{2015}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{x}_{\mathrm{k}} =\mathrm{cos}^{\mathrm{2}} \:\alpha=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\alpha=\mathrm{1}−\frac{\mathrm{4}}{\mathrm{2015}}=\frac{\mathrm{2011}}{\mathrm{2015}} \\ $$$$ \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2015}} {\sum}}\mathrm{sin}\:\mathrm{2x}_{\mathrm{k}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2015}} {\sum}}\mathrm{sin}\:\mathrm{2}\alpha=\mathrm{2015}×\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$=\mathrm{2015}×\mathrm{2}×\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha \\ $$$$=\mathrm{2015}×\mathrm{2}×\sqrt{\mathrm{sin}^{\mathrm{2}} \:\alpha\:\mathrm{cos}^{\mathrm{2}} \:\alpha} \\ $$$$=\mathrm{2015}×\mathrm{2}×\sqrt{\frac{\mathrm{4}}{\mathrm{2015}}×\frac{\mathrm{2011}}{\mathrm{2015}}} \\ $$$$=\mathrm{2015}×\mathrm{2}×\frac{\mathrm{2}\sqrt{\mathrm{2011}}}{\mathrm{2015}} \\ $$$$=\mathrm{4}\sqrt{\mathrm{2011}} \\ $$$$ \\ $$$$\mathrm{note}:\:\mathrm{what}\:\mathrm{I}\:\mathrm{did}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{strict}\:\mathrm{proof}, \\ $$$$\mathrm{though}\:\mathrm{I}\:\mathrm{believe}\:\mathrm{it}\:\mathrm{is}\:\mathrm{correct}. \\ $$

Commented by tawa tawa last updated on 09/Jun/17

I appreciate your time sir. God bless you sir.

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com