Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153054 by daus last updated on 04/Sep/21

Answered by bobhans last updated on 04/Sep/21

 { ((g(x)=1−2x)),((f(x)=kx^2 +m)) :} ⇒(f•g)(x)=x^2 −2x+5  ⇒k(1−2x)^2 +m = x^2 −2x+5  ⇒k(4x^2 −4x+1)+m=x^2 −2x+5  ⇒4kx^2 −4kx+k+m=x^2 −2x+5  → { ((4k=1 ⇒k=(1/4) but)),((4k=2⇒k=(1/2))) :}   something wrong the question

$$\begin{cases}{{g}\left({x}\right)=\mathrm{1}−\mathrm{2}{x}}\\{{f}\left({x}\right)={kx}^{\mathrm{2}} +{m}}\end{cases}\:\Rightarrow\left({f}\bullet{g}\right)\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\Rightarrow{k}\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{2}} +{m}\:=\:{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\Rightarrow{k}\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}\right)+{m}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\Rightarrow\mathrm{4}{kx}^{\mathrm{2}} −\mathrm{4}{kx}+{k}+{m}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\rightarrow\begin{cases}{\mathrm{4}{k}=\mathrm{1}\:\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{4}}\:{but}}\\{\mathrm{4}{k}=\mathrm{2}\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$\:{something}\:{wrong}\:{the}\:{question} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com