Question Number 152993 by 7770 last updated on 03/Sep/21 | ||
Commented by otchereabdullai@gmail.com last updated on 08/Sep/21 | ||
$$\mathrm{nice} \\ $$ | ||
Answered by bobhans last updated on 04/Sep/21 | ||
$$\frac{{dy}}{{dx}}=\:\frac{\mathrm{3}\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}−\mathrm{3}{x}\left(\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}\right)}{{x}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{15}−\mathrm{3}{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{3}/\mathrm{2}} }=\frac{\mathrm{15}}{\left({x}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{3}/\mathrm{2}} } \\ $$$$ \\ $$ | ||
Answered by bobhans last updated on 04/Sep/21 | ||
$$\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}\:{dx}\:=\frac{\mathrm{3}}{\mathrm{2}}\int_{\sqrt{\mathrm{5}}} ^{\mathrm{3}} \frac{{du}}{\:\sqrt{{u}}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{2}}\left[\:\mathrm{2}\sqrt{{u}}\:\right]_{\sqrt{\mathrm{5}}} ^{\mathrm{3}} \:=\:\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{3}\sqrt[{\mathrm{4}}]{\mathrm{5}}\: \\ $$ | ||
Answered by hoochhoch last updated on 04/Sep/21 | ||
Commented by benhamimed last updated on 04/Sep/21 | ||
$${x}=\sqrt{\mathrm{19}−\mathrm{8}\sqrt{\mathrm{3}}}=\sqrt{\left(\mathrm{4}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\mathrm{4}−\sqrt{\mathrm{3}} \\ $$$${A}=\frac{\left(\mathrm{19}−\mathrm{8}\sqrt{\mathrm{3}}\right)\left(\mathrm{19}−\mathrm{8}\sqrt{\mathrm{3}}−\mathrm{6}\left(\mathrm{4}−\sqrt{\mathrm{3}}\right)−\mathrm{2}\right)+\mathrm{18}\left(\mathrm{4}−\sqrt{\mathrm{3}}\right)+\mathrm{24}}{\mathrm{19}−\mathrm{8}\sqrt{\mathrm{3}}−\mathrm{8}\left(\mathrm{4}−\sqrt{\mathrm{3}}\right)+\mathrm{15}} \\ $$$${A}=\frac{\left(\mathrm{19}−\mathrm{8}\sqrt{\mathrm{3}}\right)\left(−\mathrm{7}−\mathrm{2}\sqrt{\mathrm{3}}\right)+\mathrm{96}−\mathrm{18}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$=\frac{−\mathrm{133}+\mathrm{48}+\mathrm{56}\sqrt{\mathrm{3}}−\mathrm{38}\sqrt{\mathrm{3}}+\mathrm{96}−\mathrm{18}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${A}=\frac{\mathrm{11}}{\mathrm{2}} \\ $$ | ||