Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 152974 by Rankut last updated on 03/Sep/21

Commented by Rankut last updated on 03/Sep/21

help

$${help} \\ $$

Commented by mr W last updated on 03/Sep/21

try to make the question clear!  do you mean  f ′(x)=2, f ′(1)=0 ?   this is not possible.  or do you mean  f ′′(x)=2, f ′(1)=0 ?

$${try}\:{to}\:{make}\:{the}\:{question}\:{clear}! \\ $$$${do}\:{you}\:{mean} \\ $$$${f}\:'\left({x}\right)=\mathrm{2},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{0}\:?\: \\ $$$${this}\:{is}\:{not}\:{possible}. \\ $$$${or}\:{do}\:{you}\:{mean} \\ $$$${f}\:''\left({x}\right)=\mathrm{2},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{0}\:?\: \\ $$

Commented by Rankut last updated on 03/Sep/21

yes please  f ′′(x)=2, f ′(1)=0

$${yes}\:{please} \\ $$$${f}\:''\left({x}\right)=\mathrm{2},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{0} \\ $$

Commented by mr W last updated on 03/Sep/21

f ′′(x)=2  ⇒f ′(x)=2x+C  f ′(1)=2×1+C=0 ⇒C=−2  ⇒f ′(x)=2x−2  ⇒f(x)=x^2 −2x+C_1   f(0)=0^2 −2×0+C_1 =−8 ⇒C_1 =−8  ⇒f(x)=x^2 −2x−8

$${f}\:''\left({x}\right)=\mathrm{2} \\ $$$$\Rightarrow{f}\:'\left({x}\right)=\mathrm{2}{x}+{C} \\ $$$${f}\:'\left(\mathrm{1}\right)=\mathrm{2}×\mathrm{1}+{C}=\mathrm{0}\:\Rightarrow{C}=−\mathrm{2} \\ $$$$\Rightarrow{f}\:'\left({x}\right)=\mathrm{2}{x}−\mathrm{2} \\ $$$$\Rightarrow{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}+{C}_{\mathrm{1}} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}^{\mathrm{2}} −\mathrm{2}×\mathrm{0}+{C}_{\mathrm{1}} =−\mathrm{8}\:\Rightarrow{C}_{\mathrm{1}} =−\mathrm{8} \\ $$$$\Rightarrow{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{8} \\ $$

Commented by amin96 last updated on 03/Sep/21

  Write as clearly as possible. the image is unclear

$$ \\ $$Write as clearly as possible. the image is unclear

Commented by 7770 last updated on 04/Sep/21

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com