Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 152829 by liberty last updated on 01/Sep/21

Answered by MJS_new last updated on 02/Sep/21

z^2 =1−x^2 −y^2   ⇒ f(x, y, z)=x^2 +y^2 +x+2y−1  (1) obviously x≥0∧y≥0 to get a maximum  (2) obviously x≤1∧y≤1  (3) x^2 +y^2 ≤1 ⇒ max (x^2 +y^2 ) =1 with y=(√(1−x^2 ))  ⇒ f(x, y, z)=x+2(√(1−x^2 ))  ⇒ f ′=1−((2x)/( (√(1−x^2 ))))=0 ⇒ x=((√5)/5) ⇒ y=((2(√5))/5) ⇒ z=0  ⇒ max (f(x, y, z)) =(√5)

$${z}^{\mathrm{2}} =\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$\Rightarrow\:{f}\left({x},\:{y},\:{z}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}+\mathrm{2}{y}−\mathrm{1} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{obviously}\:{x}\geqslant\mathrm{0}\wedge{y}\geqslant\mathrm{0}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}\:\mathrm{maximum} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{obviously}\:{x}\leqslant\mathrm{1}\wedge{y}\leqslant\mathrm{1} \\ $$$$\left(\mathrm{3}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}\:\Rightarrow\:\mathrm{max}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:=\mathrm{1}\:\mathrm{with}\:{y}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{f}\left({x},\:{y},\:{z}\right)={x}+\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{f}\:'=\mathrm{1}−\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\mathrm{0}\:\Rightarrow\:{x}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\:\Rightarrow\:{y}=\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{5}}\:\Rightarrow\:{z}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{max}\:\left({f}\left({x},\:{y},\:{z}\right)\right)\:=\sqrt{\mathrm{5}} \\ $$

Answered by mr W last updated on 02/Sep/21

such that f(x,y,z)=x+2y−z^2  is max.  ⇒z=0  ⇒x^2 +y^2 =1 ⇒x=cos θ, y=sin θ  f=cos θ+2sin θ=(√5) cos (θ−tan^(−1) 2)  f_(max) =(√5)  at θ=tan^(−1) 2 ⇒x=(1/( (√5))), y=(2/( (√5))), z=0

$${such}\:{that}\:{f}\left({x},{y},{z}\right)={x}+\mathrm{2}{y}−{z}^{\mathrm{2}} \:{is}\:{max}. \\ $$$$\Rightarrow{z}=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow{x}=\mathrm{cos}\:\theta,\:{y}=\mathrm{sin}\:\theta \\ $$$${f}=\mathrm{cos}\:\theta+\mathrm{2sin}\:\theta=\sqrt{\mathrm{5}}\:\mathrm{cos}\:\left(\theta−\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\right) \\ $$$${f}_{{max}} =\sqrt{\mathrm{5}} \\ $$$${at}\:\theta=\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\:\Rightarrow{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}},\:{y}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}},\:{z}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com