Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 149219 by mathdanisur last updated on 03/Aug/21

Answered by mindispower last updated on 03/Aug/21

 ^4 (√ϕ)=x  ⇔(2/x)+x^2 <1+((x^2 +x^4 +x^3 )/2)  ⇒4+2x^3 <2x+x^3 +x^5 +x^4   ⇔x^5 +x^4 −x^3 +2x−4>0,x=^4 (√ϕ)>1  easy

$$\:\:^{\mathrm{4}} \sqrt{\varphi}={x} \\ $$$$\Leftrightarrow\frac{\mathrm{2}}{{x}}+{x}^{\mathrm{2}} <\mathrm{1}+\frac{{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}+\mathrm{2}{x}^{\mathrm{3}} <\mathrm{2}{x}+{x}^{\mathrm{3}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} \\ $$$$\Leftrightarrow{x}^{\mathrm{5}} +{x}^{\mathrm{4}} −{x}^{\mathrm{3}} +\mathrm{2}{x}−\mathrm{4}>\mathrm{0},{x}=^{\mathrm{4}} \sqrt{\varphi}>\mathrm{1} \\ $$$${easy} \\ $$$$ \\ $$$$ \\ $$

Commented by mathdanisur last updated on 03/Aug/21

Thank You Ser thats it...

$${Thank}\:{You}\:{Ser}\:{thats}\:{it}... \\ $$

Answered by dumitrel last updated on 03/Aug/21

1+(1/ϕ)=ϕ⇒(1/ϕ)=ϕ−1  (2/( (ϕ)^(1/4) ))+(√ϕ)=2∙(((1/ϕ)∙1∙1∙1))^(1/4) +(√(1∙ϕ))<2∙(((1/ϕ)+3)/4)+((ϕ+1)/2)=  ((ϕ−1+3+ϕ+1)/2)=((2ϕ+3)/2)  1+(((√ϕ)+ϕ+ϕ(√ϕ))/2)=1+((ϕ+(√ϕ)(1+ϕ))/)>1+((ϕ+(√ϕ)∙2(√ϕ))/)=((2ϕ+3)/2)

$$\mathrm{1}+\frac{\mathrm{1}}{\varphi}=\varphi\Rightarrow\frac{\mathrm{1}}{\varphi}=\varphi−\mathrm{1} \\ $$$$\frac{\mathrm{2}}{\:\sqrt[{\mathrm{4}}]{\varphi}}+\sqrt{\varphi}=\mathrm{2}\centerdot\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}}{\varphi}\centerdot\mathrm{1}\centerdot\mathrm{1}\centerdot\mathrm{1}}+\sqrt{\mathrm{1}\centerdot\varphi}<\mathrm{2}\centerdot\frac{\frac{\mathrm{1}}{\varphi}+\mathrm{3}}{\mathrm{4}}+\frac{\varphi+\mathrm{1}}{\mathrm{2}}= \\ $$$$\frac{\varphi−\mathrm{1}+\mathrm{3}+\varphi+\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{2}\varphi+\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{1}+\frac{\sqrt{\varphi}+\varphi+\varphi\sqrt{\varphi}}{\mathrm{2}}=\mathrm{1}+\frac{\varphi+\sqrt{\varphi}\left(\mathrm{1}+\varphi\right)}{}>\mathrm{1}+\frac{\varphi+\sqrt{\varphi}\centerdot\mathrm{2}\sqrt{\varphi}}{}=\frac{\mathrm{2}\varphi+\mathrm{3}}{\mathrm{2}} \\ $$

Commented by mathdanisur last updated on 03/Aug/21

Ser, Thank You

$${Ser},\:{Thank}\:{You} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com