Question Number 147768 by aliibrahim1 last updated on 23/Jul/21 | ||
Answered by liberty last updated on 23/Jul/21 | ||
$${Let}\:{BC}\:=\:{x}\:\Rightarrow\mathrm{tan}\:\mathrm{44}°=\frac{{CD}}{{x}} \\ $$$$\Rightarrow{CD}={x}\:\mathrm{tan}\:\mathrm{44}° \\ $$$$\mathrm{L}{et}\:{AC}\:={y}\Rightarrow\mathrm{tan}\:\mathrm{48}°=\frac{{CD}}{{y}} \\ $$$$\Rightarrow{CD}={y}\:\mathrm{tan}\:\mathrm{48}° \\ $$$${where}\:{y}=\sqrt{\mathrm{30}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:=\sqrt{\mathrm{900}−{x}^{\mathrm{2}} } \\ $$$$\left(\bullet\right){CD}={CD} \\ $$$$\Rightarrow{x}\:\mathrm{tan}\:\mathrm{44}°=\sqrt{\mathrm{900}−{x}^{\mathrm{2}} }\:\mathrm{tan}\:\mathrm{48}° \\ $$$$\Rightarrow{x}^{\mathrm{2}} \:\mathrm{tan}\:^{\mathrm{2}} \mathrm{44}°=\left(\mathrm{900}−{x}^{\mathrm{2}} \right)\mathrm{tan}\:^{\mathrm{2}} \mathrm{48}° \\ $$$$\Rightarrow{x}^{\mathrm{2}} \left(\mathrm{tan}\:^{\mathrm{2}} \mathrm{44}°+\mathrm{tan}^{\mathrm{2}} \:\mathrm{48}°\right)=\mathrm{900}×\mathrm{tan}\:^{\mathrm{2}} \mathrm{48}° \\ $$$$\Rightarrow{x}\:=\:\sqrt{\frac{\mathrm{900}×\mathrm{tan}^{\mathrm{2}} \:\mathrm{48}°}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{44}°+\mathrm{tan}\:^{\mathrm{2}} \mathrm{48}°}}\:\approx\mathrm{22}.\mathrm{64} \\ $$$$\therefore\:{CD}=\mathrm{22}.\mathrm{64}×\mathrm{tan}\:\mathrm{44}°\approx\:\mathrm{21}.\mathrm{87} \\ $$ | ||