Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 147162 by nadovic last updated on 18/Jul/21

Answered by liberty last updated on 18/Jul/21

(1)p^→ =(2/5)a^→ +(1/5)b^→ +(2/5)c^→   (2)p^→ .b^→ =p^→ .a^→         (2/5)a^→ .b^→ +(1/5)∣b^→ ∣^2 +(2/5)b^→ .c^→  =       (2/5)∣a^→ ∣^2 +(1/5)a^→ .b^→ +(2/5)a^→ .c^→        (2/5)b^→ .c^→  +(1/5)∣b^→ ∣^2 =(2/5)∣a^→ ∣^2 +(2/5)a^→ .c^→        2b^→ .c^→ −2a^→ .c^→  =2∣a^→ ∣^2 −∣b^→ ∣^2   (3)a^→ .b^→ = 0  then c^→ .(b^→ −a^→ )= b^→ .c^→ −a^→ .c^→                                  = ∣a^→ ∣^2 −(1/2)∣b^→ ∣^2

$$\left(\mathrm{1}\right)\overset{\rightarrow} {{p}}=\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{a}}+\frac{\mathrm{1}}{\mathrm{5}}\overset{\rightarrow} {{b}}+\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{c}} \\ $$$$\left(\mathrm{2}\right)\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{b}}=\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{a}} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{b}}+\frac{\mathrm{1}}{\mathrm{5}}\mid\overset{\rightarrow} {{b}}\mid^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{c}}\:= \\ $$$$\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{5}}\mid\overset{\rightarrow} {{a}}\mid^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{5}}\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{b}}+\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{c}} \\ $$$$\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{c}}\:+\frac{\mathrm{1}}{\mathrm{5}}\mid\overset{\rightarrow} {{b}}\mid^{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{5}}\mid\overset{\rightarrow} {{a}}\mid^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{c}} \\ $$$$\:\:\:\:\:\mathrm{2}\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{c}}−\mathrm{2}\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{c}}\:=\mathrm{2}\mid\overset{\rightarrow} {{a}}\mid^{\mathrm{2}} −\mid\overset{\rightarrow} {{b}}\mid^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{b}}=\:\mathrm{0} \\ $$$${then}\:\overset{\rightarrow} {{c}}.\left(\overset{\rightarrow} {{b}}−\overset{\rightarrow} {{a}}\right)=\:\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{c}}−\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{c}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mid\overset{\rightarrow} {{a}}\mid^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\mid\overset{\rightarrow} {{b}}\mid^{\mathrm{2}} \\ $$

Commented by nadovic last updated on 18/Jul/21

Thank you very much Sir

$${Thank}\:{you}\:{very}\:{much}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com