Question Number 147091 by aliibrahim1 last updated on 17/Jul/21 | ||
Answered by Olaf_Thorendsen last updated on 18/Jul/21 | ||
$${f}\left({x},{y}+{z}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{z}\right) \\ $$$${y}\:=\:{z} \\ $$$${f}\left({x},\mathrm{2}{y}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{y}\right)\:=\:{f}^{\mathrm{2}} \left({x},{y}\right) \\ $$$$\Rightarrow\:{f}\left({x},\mathrm{2}^{{n}} {y}\right)\:=\:{f}^{\mathrm{2}^{{n}} } \left({x},{y}\right) \\ $$$$\Rightarrow\:{f}\left({x},\mathrm{2}^{{n}} \right)\:=\:{f}^{\mathrm{2}^{{n}} } \left({x},\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left({x},{y}+{z}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{z}\right) \\ $$$${f}\left({x},{y}+{z}+{t}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{z}+{t}\right) \\ $$$${f}\left({x},{y}+{z}+{t}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{z}\right){f}\left({x},{t}\right) \\ $$$$ \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:{f}\left(\mathrm{5},\mathrm{64}+\mathrm{32}+\mathrm{4}\right) \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:{f}\left(\mathrm{5},\mathrm{64}\right){f}\left(\mathrm{5},\mathrm{32}\right){f}\left(\mathrm{5},\mathrm{4}\right) \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:{f}\left(\mathrm{5},\mathrm{2}^{\mathrm{6}} \right){f}\left(\mathrm{5},\mathrm{2}^{\mathrm{5}} \right){f}\left(\mathrm{5},\mathrm{2}^{\mathrm{2}} \right) \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:{f}^{\mathrm{64}} \left(\mathrm{5},\mathrm{1}\right){f}^{\mathrm{32}} \left(\mathrm{5},\mathrm{1}\right){f}^{\mathrm{4}} \left(\mathrm{5},\mathrm{1}\right) \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:{f}^{\mathrm{100}} \left(\mathrm{5},\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left({x}+{y},\mathrm{1}\right)\:=\:{f}\left({x},\mathrm{1}\right)+{f}\left({y},\mathrm{1}\right) \\ $$$${f}\left({x}+{y}+{z}+{t}+{u},\mathrm{1}\right)\:=\:{f}\left({x},\mathrm{1}\right)+{f}\left({y}+{z}+{t}+{u},\mathrm{1}\right) \\ $$$$=\:{f}\left({x},\mathrm{1}\right)+{f}\left({y},\mathrm{1}\right)+{f}\left({z}+{t}+{u},\mathrm{1}\right) \\ $$$$=....{etc} \\ $$$$=\:{f}\left({x},\mathrm{1}\right)+{f}\left({y},\mathrm{1}\right)+...+{f}\left({u},\mathrm{1}\right) \\ $$$${x}\:=\:{y}\:=\:{z}\:=\:{t}\:=\:{u}\:=\:\mathrm{1} \\ $$$${f}\left(\mathrm{5},\mathrm{1}\right)\:=\:\mathrm{5}{f}\left(\mathrm{1},\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:{f}^{\mathrm{100}} \left(\mathrm{5},\mathrm{1}\right)\:=\:\mathrm{5}^{\mathrm{100}} {f}^{\mathrm{100}} \left(\mathrm{1},\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left({x}+{y},\mathrm{2}\right)\:=\:{f}\left({x},\mathrm{2}\right)+\mathrm{4}{f}\left({xy},\mathrm{1}\right)+{f}\left({y},\mathrm{2}\right) \\ $$$${x}\:=\:{y}\:=\:\mathrm{1} \\ $$$${f}\left(\mathrm{2},\mathrm{2}\right)\:=\:{f}\left(\mathrm{1},\mathrm{2}\right)+\mathrm{4}{f}\left(\mathrm{1},\mathrm{1}\right)+{f}\left(\mathrm{1},\mathrm{2}\right) \\ $$$${f}^{\mathrm{2}} \left(\mathrm{2},\mathrm{1}\right)\:=\:{f}^{\mathrm{2}} \left(\mathrm{1},\mathrm{1}\right)+\mathrm{4}{f}\left(\mathrm{1},\mathrm{1}\right)+{f}^{\mathrm{2}} \left(\mathrm{1},\mathrm{1}\right) \\ $$$${f}^{\mathrm{2}} \left(\mathrm{2},\mathrm{1}\right)\:=\:\mathrm{2}{f}^{\mathrm{2}} \left(\mathrm{1},\mathrm{1}\right)+\mathrm{4}{f}\left(\mathrm{1},\mathrm{1}\right)\:\:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left({x}+{y},\mathrm{1}\right)\:=\:{f}\left({x},\mathrm{1}\right)+{f}\left({y},\mathrm{1}\right) \\ $$$${x}\:=\:{y}\:=\:\mathrm{1} \\ $$$${f}\left(\mathrm{2},\mathrm{1}\right)\:=\:\mathrm{2}{f}\left(\mathrm{1},\mathrm{1}\right) \\ $$$$\left(\mathrm{1}\right)\::\:\mathrm{4}{f}^{\mathrm{2}} \left(\mathrm{1},\mathrm{1}\right)\:=\:\mathrm{2}{f}^{\mathrm{2}} \left(\mathrm{1},\mathrm{1}\right)+\mathrm{4}{f}\left(\mathrm{1},\mathrm{1}\right) \\ $$$${f}^{\mathrm{2}} \left(\mathrm{1},\mathrm{1}\right)\:=\:\mathrm{2}{f}\left(\mathrm{1},\mathrm{1}\right) \\ $$$$\Rightarrow\:{f}\left(\mathrm{1},\mathrm{1}\right)\:=\:\mathrm{0}\:\mathrm{or}\:\mathrm{2} \\ $$$$ \\ $$$$\mathrm{case}\:{f}\left(\mathrm{1},\mathrm{1}\right)\:=\:\mathrm{2} \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:\mathrm{5}^{\mathrm{100}} {f}^{\mathrm{100}} \left(\mathrm{1},\mathrm{1}\right)\:=\:\mathrm{5}^{\mathrm{100}} \mathrm{2}^{\mathrm{100}} \:=\:\mathrm{10}^{\mathrm{100}} \\ $$$${f}\left(\mathrm{5},\mathrm{100}\right)\:=\:\mathrm{10}^{\mathrm{100}} \:=\:\mathrm{1}\:\mathrm{Gogol}\:! \\ $$$$ \\ $$ | ||
Commented by aliibrahim1 last updated on 18/Jul/21 | ||
$${thank}\:{you}\:{soo}\:{much}\:{sir} \\ $$ | ||