Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145947 by Khalmohmmad last updated on 09/Jul/21

Commented by hknkrc46 last updated on 09/Jul/21

  {: ((∫f(x)dx = F(x) + c)),((∫g(x)dx = G(x) + c)) }  determinant (((G(2) = 3)),((f(5) = 1)))       • f(x) = F ′(x) ∧ g(x) = G ′(x)     • ((d[(x^2  + 2)G(x)])/dx) = ((d[F(3x − 1)])/dx)     ⇒ 2xG(x) + (x^2  + 2)G ′(x) = 3F ′(3x − 1)     ⇒ 2xG(x) + (x^2  + 2)g(x) = 3f(3x − 1)     ▶ x = 2 ⇒ 4G(2) + 6g(2) = 3f(5)     ⇒ 12 + 6g(2) = 3 ⇒ g(2) = −(3/2)

$$\:\left.\begin{matrix}{\int\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\:=\:\boldsymbol{{F}}\left(\boldsymbol{{x}}\right)\:+\:\boldsymbol{{c}}}\\{\int\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\:=\:\boldsymbol{{G}}\left(\boldsymbol{{x}}\right)\:+\:\boldsymbol{{c}}}\end{matrix}\right\}\:\begin{matrix}{\boldsymbol{{G}}\left(\mathrm{2}\right)\:=\:\mathrm{3}}\\{\boldsymbol{{f}}\left(\mathrm{5}\right)\:=\:\mathrm{1}}\end{matrix} \\ $$$$ \\ $$$$\:\:\:\bullet\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:=\:\boldsymbol{{F}}\:'\left(\boldsymbol{{x}}\right)\:\wedge\:\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)\:=\:\boldsymbol{{G}}\:'\left(\boldsymbol{{x}}\right) \\ $$$$\:\:\:\bullet\:\frac{\boldsymbol{{d}}\left[\left(\boldsymbol{{x}}^{\mathrm{2}} \:+\:\mathrm{2}\right)\boldsymbol{{G}}\left(\boldsymbol{{x}}\right)\right]}{\boldsymbol{{dx}}}\:=\:\frac{\boldsymbol{{d}}\left[\boldsymbol{{F}}\left(\mathrm{3}\boldsymbol{{x}}\:−\:\mathrm{1}\right)\right]}{\boldsymbol{{dx}}} \\ $$$$\:\:\:\Rightarrow\:\mathrm{2}\boldsymbol{{xG}}\left(\boldsymbol{{x}}\right)\:+\:\left(\boldsymbol{{x}}^{\mathrm{2}} \:+\:\mathrm{2}\right)\boldsymbol{{G}}\:'\left(\boldsymbol{{x}}\right)\:=\:\mathrm{3}\boldsymbol{{F}}\:'\left(\mathrm{3}\boldsymbol{{x}}\:−\:\mathrm{1}\right) \\ $$$$\:\:\:\Rightarrow\:\mathrm{2}\boldsymbol{{xG}}\left(\boldsymbol{{x}}\right)\:+\:\left(\boldsymbol{{x}}^{\mathrm{2}} \:+\:\mathrm{2}\right)\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)\:=\:\mathrm{3}\boldsymbol{{f}}\left(\mathrm{3}\boldsymbol{{x}}\:−\:\mathrm{1}\right) \\ $$$$\:\:\:\blacktriangleright\:\boldsymbol{{x}}\:=\:\mathrm{2}\:\Rightarrow\:\mathrm{4}\boldsymbol{{G}}\left(\mathrm{2}\right)\:+\:\mathrm{6}\boldsymbol{{g}}\left(\mathrm{2}\right)\:=\:\mathrm{3}\boldsymbol{{f}}\left(\mathrm{5}\right) \\ $$$$\:\:\:\Rightarrow\:\mathrm{12}\:+\:\mathrm{6}\boldsymbol{{g}}\left(\mathrm{2}\right)\:=\:\mathrm{3}\:\Rightarrow\:\boldsymbol{{g}}\left(\mathrm{2}\right)\:=\:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Answered by puissant last updated on 09/Jul/21

2xG(x)+(x^2 +1)g(x)=3f(3x−1)  x=2 ⇒  4G(2)+5g(2)=3f(5)  ⇒5g(2)=3f(5)−4G(2)  ⇒g(2)=(1/5)(3−12)=−(9/5)..  ⇒g(2)=−(9/5)

$$\mathrm{2xG}\left(\mathrm{x}\right)+\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{g}\left(\mathrm{x}\right)=\mathrm{3f}\left(\mathrm{3x}−\mathrm{1}\right) \\ $$$$\mathrm{x}=\mathrm{2}\:\Rightarrow\:\:\mathrm{4G}\left(\mathrm{2}\right)+\mathrm{5g}\left(\mathrm{2}\right)=\mathrm{3f}\left(\mathrm{5}\right) \\ $$$$\Rightarrow\mathrm{5g}\left(\mathrm{2}\right)=\mathrm{3f}\left(\mathrm{5}\right)−\mathrm{4G}\left(\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{g}\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{3}−\mathrm{12}\right)=−\frac{\mathrm{9}}{\mathrm{5}}.. \\ $$$$\Rightarrow\mathrm{g}\left(\mathrm{2}\right)=−\frac{\mathrm{9}}{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com