Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145918 by mathdanisur last updated on 09/Jul/21

Answered by Olaf_Thorendsen last updated on 09/Jul/21

l = 3+(√(3^2 +(√(3^4 +(√(3^8 +(√(...))))))))  (l−3)^2  = 3^2 +(√(3^4 +(√(3^8 +(√(...))))))  (l−3)^2  = 3^2 +(√(3^4 +3^2 (√(3^4 +(√(...))))))  (l−3)^2  = 3^2 +3(√(3^2 +(√(3^4 +(√(...))))))  (((l−3)^2 )/3) = 3+(√(3^2 +(√(3^4 +(√(...)))))) = l  l^2 −9l+9 = 0  l = ((9±(√(81−4×1×9)))/2)  l = ((9±3(√5))/2)  ((9−3(√5))/2) ≈ 1,146 : impossible because l>3  Finally l = ((9+3(√5))/2) ≈ 7,854

$${l}\:=\:\mathrm{3}+\sqrt{\mathrm{3}^{\mathrm{2}} +\sqrt{\mathrm{3}^{\mathrm{4}} +\sqrt{\mathrm{3}^{\mathrm{8}} +\sqrt{...}}}} \\ $$$$\left({l}−\mathrm{3}\right)^{\mathrm{2}} \:=\:\mathrm{3}^{\mathrm{2}} +\sqrt{\mathrm{3}^{\mathrm{4}} +\sqrt{\mathrm{3}^{\mathrm{8}} +\sqrt{...}}} \\ $$$$\left({l}−\mathrm{3}\right)^{\mathrm{2}} \:=\:\mathrm{3}^{\mathrm{2}} +\sqrt{\mathrm{3}^{\mathrm{4}} +\mathrm{3}^{\mathrm{2}} \sqrt{\mathrm{3}^{\mathrm{4}} +\sqrt{...}}} \\ $$$$\left({l}−\mathrm{3}\right)^{\mathrm{2}} \:=\:\mathrm{3}^{\mathrm{2}} +\mathrm{3}\sqrt{\mathrm{3}^{\mathrm{2}} +\sqrt{\mathrm{3}^{\mathrm{4}} +\sqrt{...}}} \\ $$$$\frac{\left({l}−\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{3}}\:=\:\mathrm{3}+\sqrt{\mathrm{3}^{\mathrm{2}} +\sqrt{\mathrm{3}^{\mathrm{4}} +\sqrt{...}}}\:=\:{l} \\ $$$${l}^{\mathrm{2}} −\mathrm{9}{l}+\mathrm{9}\:=\:\mathrm{0} \\ $$$${l}\:=\:\frac{\mathrm{9}\pm\sqrt{\mathrm{81}−\mathrm{4}×\mathrm{1}×\mathrm{9}}}{\mathrm{2}} \\ $$$${l}\:=\:\frac{\mathrm{9}\pm\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\frac{\mathrm{9}−\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\:\approx\:\mathrm{1},\mathrm{146}\::\:\mathrm{impossible}\:\mathrm{because}\:{l}>\mathrm{3} \\ $$$$\mathrm{Finally}\:{l}\:=\:\frac{\mathrm{9}+\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\:\approx\:\mathrm{7},\mathrm{854}\: \\ $$

Commented by Mrsof last updated on 09/Jul/21

sir can you help me by resideo

$${sir}\:{can}\:{you}\:{help}\:{me}\:{by}\:{resideo} \\ $$

Commented by Snail last updated on 09/Jul/21

you are that instagram guy with the id  gercekbos

$${you}\:{are}\:{that}\:{instagram}\:{guy}\:{with}\:{the}\:{id}\:\:{gercekbos} \\ $$

Commented by mathdanisur last updated on 09/Jul/21

Thankyou Ser, cool

$${Thankyou}\:{Ser},\:{cool} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com