Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 145483 by ajfour last updated on 05/Jul/21

Commented by ajfour last updated on 05/Jul/21

If released in this orientation,  how long shall it take the other  wheel of the crate to hit the  ground?  (no friction anywhere)

$${If}\:{released}\:{in}\:{this}\:{orientation}, \\ $$$${how}\:{long}\:{shall}\:{it}\:{take}\:{the}\:{other} \\ $$$${wheel}\:{of}\:{the}\:{crate}\:{to}\:{hit}\:{the} \\ $$$${ground}?\:\:\left({no}\:{friction}\:{anywhere}\right) \\ $$

Answered by mr W last updated on 05/Jul/21

Commented by mr W last updated on 06/Jul/21

AC=p=((√(a^2 +b^2 ))/2)  v_x =0  ϕ=tan^(−1) (a/b)=tan^(−1) (1/λ)  y_C =p sin (θ+ϕ)  v=(dy_C /dt)=pω cos (θ+ϕ)  (1/2)mv^2 +(1/2)Iω^2 =mg(((ab)/( (√(a^2 +b^2 ))))−p sin (θ+ϕ))  [1+3 cos^2  (θ+ϕ)]ω^2 =((12g)/( (√(a^2 +b^2 ))))(((2ab)/( a^2 +b^2 ))−sin (θ+ϕ))  let λ=(b/a)  [1+3 cos^2  (θ+ϕ)]ω^2 =((12g)/( a(√(1+λ^2 ))))(((2λ)/( 1+λ^2 ))−sin (θ+ϕ))    ω=(dθ/dt)=(√((12g)/(a(√(1+λ^2 )))))×(√((((2λ)/( 1+λ^2 ))−sin (θ+ϕ))/(1+3 cos^2  (θ+ϕ))))  ⇒t=(√((a(√(1+λ^2 )))/(12g)))∫_0 ^ϕ (√((1+3 cos^2  (θ+ϕ))/(((2λ)/( 1+λ^2 ))−sin (θ+ϕ))))dθ  ⇒t=(√((a(√(1+λ^2 )))/(12g)))∫_ϕ ^(2ϕ) (√((1+3 cos^2  φ)/(((2λ)/( 1+λ^2 ))−sin φ)))dφ  with b=2a, λ=2:  ⇒t=(√(((√5)a)/(12g)))∫_(tan^(−1) (1/2)) ^(2tan^(−1) (1/2)) (√((1+3 cos^2  φ)/((4/( 5))−sin φ)))dφ        ≈1.149799(√(a/g))

$${AC}={p}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${v}_{{x}} =\mathrm{0} \\ $$$$\varphi=\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{b}}=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\lambda} \\ $$$${y}_{{C}} ={p}\:\mathrm{sin}\:\left(\theta+\varphi\right) \\ $$$${v}=\frac{{dy}_{{C}} }{{dt}}={p}\omega\:\mathrm{cos}\:\left(\theta+\varphi\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} ={mg}\left(\frac{{ab}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}−{p}\:\mathrm{sin}\:\left(\theta+\varphi\right)\right) \\ $$$$\left[\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\left(\theta+\varphi\right)\right]\omega^{\mathrm{2}} =\frac{\mathrm{12}{g}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\left(\frac{\mathrm{2}{ab}}{\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\mathrm{sin}\:\left(\theta+\varphi\right)\right) \\ $$$${let}\:\lambda=\frac{{b}}{{a}} \\ $$$$\left[\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\left(\theta+\varphi\right)\right]\omega^{\mathrm{2}} =\frac{\mathrm{12}{g}}{\:{a}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\left(\frac{\mathrm{2}\lambda}{\:\mathrm{1}+\lambda^{\mathrm{2}} }−\mathrm{sin}\:\left(\theta+\varphi\right)\right) \\ $$$$ \\ $$$$\omega=\frac{{d}\theta}{{dt}}=\sqrt{\frac{\mathrm{12}{g}}{{a}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}}×\sqrt{\frac{\frac{\mathrm{2}\lambda}{\:\mathrm{1}+\lambda^{\mathrm{2}} }−\mathrm{sin}\:\left(\theta+\varphi\right)}{\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\left(\theta+\varphi\right)}} \\ $$$$\Rightarrow{t}=\sqrt{\frac{{a}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{12}{g}}}\int_{\mathrm{0}} ^{\varphi} \sqrt{\frac{\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\left(\theta+\varphi\right)}{\frac{\mathrm{2}\lambda}{\:\mathrm{1}+\lambda^{\mathrm{2}} }−\mathrm{sin}\:\left(\theta+\varphi\right)}}{d}\theta \\ $$$$\Rightarrow{t}=\sqrt{\frac{{a}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{12}{g}}}\int_{\varphi} ^{\mathrm{2}\varphi} \sqrt{\frac{\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\phi}{\frac{\mathrm{2}\lambda}{\:\mathrm{1}+\lambda^{\mathrm{2}} }−\mathrm{sin}\:\phi}}{d}\phi \\ $$$${with}\:{b}=\mathrm{2}{a},\:\lambda=\mathrm{2}: \\ $$$$\Rightarrow{t}=\sqrt{\frac{\sqrt{\mathrm{5}}{a}}{\mathrm{12}{g}}}\int_{\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\phi}{\frac{\mathrm{4}}{\:\mathrm{5}}−\mathrm{sin}\:\phi}}{d}\phi \\ $$$$\:\:\:\:\:\:\approx\mathrm{1}.\mathrm{149799}\sqrt{\frac{{a}}{{g}}} \\ $$

Commented by ajfour last updated on 06/Jul/21

yes, sir, i was mistaken, thanks.

$${yes},\:{sir},\:{i}\:{was}\:{mistaken},\:{thanks}. \\ $$

Commented by mr W last updated on 06/Jul/21

i can solve the integral only  numerically.

$${i}\:{can}\:{solve}\:{the}\:{integral}\:{only} \\ $$$${numerically}. \\ $$

Commented by mr W last updated on 06/Jul/21

Commented by ajfour last updated on 06/Jul/21

Thanks for the solution, too; impeccable!

Commented by mr W last updated on 06/Jul/21

y_c =ωp cos (θ+ϕ) ?

$${y}_{{c}} =\omega{p}\:\mathrm{cos}\:\left(\theta+\varphi\right)\:? \\ $$

Answered by ajfour last updated on 06/Jul/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com