Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 144607 by aliibrahim1 last updated on 26/Jun/21

Answered by mathmax by abdo last updated on 27/Jun/21

A_n =Π_(k=2) ^n e(1−(1/k^2 ))^k^2   ⇒Π_(n=2) ^∞ (....)=lim_(n⌣∞) A_n   A_n =e^(n−1)  Π_(k=2) ^n  (1−(1/k^2 ))^k^2   ⇒log(A_n )=n−1+Σ_(k=2) ^n k^2  log(1−(1/k^2 ))  log^′ (1−x)=−(1/(1−x))=−(1+x+x^2 +o(x^3 )) ⇒  log(1−x)∼−x−(x^2 /2) ⇒log(1−(1/k^2 ))∼−(1/k^2 )−(1/(2k^4 )) ⇒  k^2 log(1−(1/k^2 ))∼−1−(1/(2k^2 )) ⇒Σ_(k=2) ^n k^2 log(...)∼−(n−1)  −(1/2)Σ_(k=2) ^n  (1/k^2 ) ⇒log(A_n )∼−(1/2)Σ_(k=2) ^n  (1/k^2 )  =−(1/2)(ξ_n (2)−1) =(1/2)−((ξ_n (2))/2) ⇒  lim_(n→+∞) log(A_n )=(1/2)−(π^2 /(12)) ⇒lim_(n→+∞) A_n =e^((1/2)−(π^2 /(12)))

$$\mathrm{A}_{\mathrm{n}} =\prod_{\mathrm{k}=\mathrm{2}} ^{\mathrm{n}} \mathrm{e}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right)^{\mathrm{k}^{\mathrm{2}} } \:\Rightarrow\prod_{\mathrm{n}=\mathrm{2}} ^{\infty} \left(....\right)=\mathrm{lim}_{\mathrm{n}\smile\infty} \mathrm{A}_{\mathrm{n}} \\ $$$$\mathrm{A}_{\mathrm{n}} =\mathrm{e}^{\mathrm{n}−\mathrm{1}} \:\prod_{\mathrm{k}=\mathrm{2}} ^{\mathrm{n}} \:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right)^{\mathrm{k}^{\mathrm{2}} } \:\Rightarrow\mathrm{log}\left(\mathrm{A}_{\mathrm{n}} \right)=\mathrm{n}−\mathrm{1}+\sum_{\mathrm{k}=\mathrm{2}} ^{\mathrm{n}} \mathrm{k}^{\mathrm{2}} \:\mathrm{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right) \\ $$$$\mathrm{log}^{'} \left(\mathrm{1}−\mathrm{x}\right)=−\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}=−\left(\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{3}} \right)\right)\:\Rightarrow \\ $$$$\mathrm{log}\left(\mathrm{1}−\mathrm{x}\right)\sim−\mathrm{x}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right)\sim−\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{4}} }\:\Rightarrow \\ $$$$\mathrm{k}^{\mathrm{2}} \mathrm{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right)\sim−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\:\Rightarrow\sum_{\mathrm{k}=\mathrm{2}} ^{\mathrm{n}} \mathrm{k}^{\mathrm{2}} \mathrm{log}\left(...\right)\sim−\left(\mathrm{n}−\mathrm{1}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{2}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\:\Rightarrow\mathrm{log}\left(\mathrm{A}_{\mathrm{n}} \right)\sim−\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{2}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left(\xi_{\mathrm{n}} \left(\mathrm{2}\right)−\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\xi_{\mathrm{n}} \left(\mathrm{2}\right)}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{log}\left(\mathrm{A}_{\mathrm{n}} \right)=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{A}_{\mathrm{n}} =\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}} \\ $$$$ \\ $$

Commented by aliibrahim1 last updated on 27/Jun/21

thx sir

$${thx}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 28/Jun/21

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com