Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143709 by mnjuly1970 last updated on 17/Jun/21

Commented by mnjuly1970 last updated on 17/Jun/21

    P rove ::⇑⇑⇑

$$\:\:\:\:{P}\:{rove}\:::\Uparrow\Uparrow\Uparrow \\ $$

Commented by TheHoneyCat last updated on 17/Jun/21

1°) Proof that it is well defined  ∀x∈R_+  x≥1 ⇒ x^n ≥x  so x≥1 ⇒0< e^(−x^n ) ≤e^(−x)   also ∣cosλx∣≤1  so x≥1 ⇒ ∣e^(−x^n ) cosλx∣≤e^(−x)   knowing that ∫_1 ^(+∞) e^(−x) dx=−e<∞  ∫_0 ^(+∞) e^(−x^n ) cos(λx)dx ∈R

$$\left.\mathrm{1}°\right)\:\mathrm{Proof}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{well}\:\mathrm{defined} \\ $$$$\forall{x}\in\mathbb{R}_{+} \:{x}\geqslant\mathrm{1}\:\Rightarrow\:{x}^{{n}} \geqslant{x} \\ $$$$\mathrm{so}\:{x}\geqslant\mathrm{1}\:\Rightarrow\mathrm{0}<\:{e}^{−{x}^{{n}} } \leqslant{e}^{−{x}} \\ $$$$\mathrm{also}\:\mid\mathrm{cos}\lambda{x}\mid\leqslant\mathrm{1} \\ $$$$\mathrm{so}\:{x}\geqslant\mathrm{1}\:\Rightarrow\:\mid{e}^{−{x}^{{n}} } \mathrm{cos}\lambda{x}\mid\leqslant{e}^{−{x}} \\ $$$$\mathrm{knowing}\:\mathrm{that}\:\int_{\mathrm{1}} ^{+\infty} {e}^{−{x}} {dx}=−{e}<\infty \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{{n}} } \mathrm{cos}\left(\lambda{x}\right){dx}\:\in\mathbb{R} \\ $$

Answered by TheHoneyCat last updated on 17/Jun/21

let (a,b)∈(R_+ )^2  and l be this limit  with   ∫_0 ^(+∞) e^(−x^n ) cosλx dx  =Re(∫_0 ^(+∞) e^(−(x^n  +λix) ) dx)  =Re([((−1)/λ)e^(−x^n ) e^(−λix) ]_0 ^(+∞) −∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =Re(((−1)/λ)−∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =((−1)/λ)−Re(∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  with λ sugiciently high  =∣((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) ∣  =((nx^(n−1) )/λ)e^(−x^n ) ≤e^(−P(x))  with P some polynomial such that P(x)→_(x→+∞) +∞  e^(−P(x))  can be integrated, and is independent from λ  thus:  lim_(λ→+∞) ((−1)/λ)−Re(∫_0 ^(+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =lim_(λ→+∞) ((−1)/λ)−Re(∫_0 ^(+∞) lim_(λ→+∞) ((nx^(n−1) )/λ)e^(−x^n ) e^(−iλx) dx)  =0−Re(∫_0 ^(+∞) 0dx)  =0_■

$$\mathrm{let}\:\left({a},{b}\right)\in\left(\mathbb{R}_{+} \right)^{\mathrm{2}} \:\mathrm{and}\:{l}\:\mathrm{be}\:\mathrm{this}\:\mathrm{limit} \\ $$$${with}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{{n}} } \mathrm{cos}\lambda{x}\:{dx} \\ $$$$=\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} {e}^{−\left({x}^{{n}} \:+\lambda\boldsymbol{{i}}{x}\right)\:} {dx}\right) \\ $$$$=\mathrm{Re}\left(\left[\frac{−\mathrm{1}}{\lambda}{e}^{−{x}^{{n}} } {e}^{−\lambda\boldsymbol{{i}}{x}} \right]_{\mathrm{0}} ^{+\infty} −\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$=\mathrm{Re}\left(\frac{−\mathrm{1}}{\lambda}−\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$=\frac{−\mathrm{1}}{\lambda}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$\mathrm{with}\:\lambda\:{sugiciently}\:{high} \\ $$$$=\mid\frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} \mid \\ $$$$=\frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } \leqslant{e}^{−\mathrm{P}\left({x}\right)} \:\mathrm{with}\:\mathrm{P}\:\mathrm{some}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that}\:\mathrm{P}\left({x}\right)\underset{{x}\rightarrow+\infty} {\rightarrow}+\infty \\ $$$${e}^{−\mathrm{P}\left({x}\right)} \:\mathrm{can}\:\mathrm{be}\:\mathrm{integrated},\:\mathrm{and}\:\mathrm{is}\:\mathrm{independent}\:\mathrm{from}\:\lambda \\ $$$$\mathrm{thus}: \\ $$$${lim}_{\lambda\rightarrow+\infty} \frac{−\mathrm{1}}{\lambda}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$={lim}_{\lambda\rightarrow+\infty} \frac{−\mathrm{1}}{\lambda}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} {lim}_{\lambda\rightarrow+\infty} \frac{{nx}^{{n}−\mathrm{1}} }{\lambda}{e}^{−{x}^{{n}} } {e}^{−\boldsymbol{{i}}\lambda{x}} {dx}\right) \\ $$$$=\mathrm{0}−\mathrm{Re}\left(\int_{\mathrm{0}} ^{+\infty} \mathrm{0}{dx}\right) \\ $$$$=\mathrm{0}_{\blacksquare} \\ $$

Commented by mnjuly1970 last updated on 17/Jun/21

thanks alot ....

$${thanks}\:{alot}\:.... \\ $$

Commented by TheHoneyCat last updated on 17/Jun/21

your welcome :•)

$$\left.{your}\:{welcome}\::\bullet\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com