Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 143109 by mnjuly1970 last updated on 10/Jun/21

Commented by mnjuly1970 last updated on 10/Jun/21

     prove  I_1 =−(π^2 /(192))  .....?

$$\:\:\:\:\:{prove}\:\:\mathrm{I}_{\mathrm{1}} =−\frac{\pi^{\mathrm{2}} }{\mathrm{192}}\:\:.....? \\ $$

Answered by qaz last updated on 10/Jun/21

I_1 =∫_0 ^1 (x^3 /(1+x^4 ))lnxdx  =(1/4)[ln(1+x^4 )lnx∣_0 ^1 −∫_0 ^1 ((ln(1+x^4 ))/x)dx]  =−(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(4n−1) dx  =−(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/(4n^2 ))  =−(1/(16))(1−2^(1−2) )ζ(2)  =−(π^2 /(192))

$$\mathrm{I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{lnxdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)\mathrm{lnx}\mid_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}}\mathrm{dx}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{4n}−\mathrm{1}} \mathrm{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{4n}^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{16}}\left(\mathrm{1}−\mathrm{2}^{\mathrm{1}−\mathrm{2}} \right)\zeta\left(\mathrm{2}\right) \\ $$$$=−\frac{\pi^{\mathrm{2}} }{\mathrm{192}} \\ $$

Commented by mnjuly1970 last updated on 10/Jun/21

thanks alot...

$${thanks}\:{alot}... \\ $$

Answered by Ar Brandon last updated on 10/Jun/21

I_1 =(1/4)[ln(1+x^4 )lnx−∫((ln(1+x^4 ))/x)dx]_0 ^1       =−(1/4)∫_0 ^1 Σ_(n=1) ^∞ (−1)^(n+1) (x^(4n−1) /n)=−Σ_(n=1) ^∞ (((−1)^(n+1) )/(16n^2 ))      =−((η(2))/(16))=−((ζ(2))/(16))(1−(1/2))=−(π^2 /(192))

$$\mathrm{I}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)\mathrm{lnx}−\int\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}}\mathrm{dx}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} \frac{\mathrm{x}^{\mathrm{4n}−\mathrm{1}} }{\mathrm{n}}=−\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\mathrm{16n}^{\mathrm{2}} } \\ $$$$\:\:\:\:=−\frac{\eta\left(\mathrm{2}\right)}{\mathrm{16}}=−\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{16}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{192}} \\ $$

Commented by mnjuly1970 last updated on 10/Jun/21

grateful..

$${grateful}.. \\ $$

Answered by Olaf_Thorendsen last updated on 10/Jun/21

I_1 = ∫_0 ^1 (x^3 /(1+x^4 ))lnx dx  I_1 = ∫_0 ^1 x^3 lnxΣ_(n=0) ^∞ (−1)^n x^(4n)  dx  I_1 = ∫_0 ^1 lnxΣ_(n=0) ^∞ (−1)^n x^(4n+3)  dx  I_1 = [lnxΣ_(n=0) ^∞ (−1)^n (x^(4n+4) /(4n+4))]_0 ^1   −∫_0 ^1 (1/x)Σ_(n=0) ^∞ (−1)^n (x^(4n+4) /(4n+4)) dx  I_1  = −∫_0 ^1 Σ_(n=0) ^∞ (−1)^n (x^(4n+3) /(4n+4)) dx  I_1  = −[Σ_(n=0) ^∞ (−1)^n (x^(4n+4) /((4n+4)^2 ))]_0 ^1   I_1  = −Σ_(n=0) ^∞ (((−1)^n )/((4n+4)^2 ))  I_1  = (1/(16))Σ_(n=0) ^∞ (((−1)^(n+1) )/((n+1)^2 ))  I_1  = (1/(16))Σ_(n=1) ^∞ (((−1)^n )/n^2 ) = (1/(16))(−(π^2 /(12))) = −(π^2 /(192))

$$\mathrm{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }\mathrm{ln}{x}\:{dx} \\ $$$$\mathrm{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}} \mathrm{ln}{x}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{4}{n}} \:{dx} \\ $$$$\mathrm{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}{x}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{4}{n}+\mathrm{3}} \:{dx} \\ $$$$\mathrm{I}_{\mathrm{1}} =\:\left[\mathrm{ln}{x}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{4}{n}+\mathrm{4}} }{\mathrm{4}{n}+\mathrm{4}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{4}{n}+\mathrm{4}} }{\mathrm{4}{n}+\mathrm{4}}\:{dx} \\ $$$$\mathrm{I}_{\mathrm{1}} \:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{4}{n}+\mathrm{3}} }{\mathrm{4}{n}+\mathrm{4}}\:{dx} \\ $$$$\mathrm{I}_{\mathrm{1}} \:=\:−\left[\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{4}{n}+\mathrm{4}} }{\left(\mathrm{4}{n}+\mathrm{4}\right)^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{I}_{\mathrm{1}} \:=\:−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{4}{n}+\mathrm{4}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{16}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{16}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{16}}\left(−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\right)\:=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{192}} \\ $$

Commented by mnjuly1970 last updated on 10/Jun/21

  mercey mr olaf...

$$\:\:{mercey}\:{mr}\:{olaf}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com