Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 141489 by mathsuji last updated on 19/May/21

Answered by qaz last updated on 19/May/21

someone may be able to deal with   this (2/( (√π)))∫_0 ^(π/2) Σ((cos^(2n) x)/(n^2 +1))dx.....

$${someone}\:{may}\:{be}\:{able}\:{to}\:{deal}\:{with}\: \\ $$$${this}\:\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \Sigma\frac{\mathrm{cos}\:^{\mathrm{2}{n}} {x}}{{n}^{\mathrm{2}} +\mathrm{1}}{dx}..... \\ $$

Commented by mathsuji last updated on 19/May/21

solution Sir please...

$${solution}\:{Sir}\:{please}... \\ $$

Answered by mindispower last updated on 19/May/21

Γ(n+(1/2))=(n−(1/2)).....((1/2))Γ((1/2))=(√π).((1/2))_n   n^2 +1=(n−i)(n+i)  Γ(n+1)=n!  Σ_(n≥1) ((((1/2))_n .(√π))/((n+i)(n−i)))  (n+i)=(((i)_n )/((1+i)_n ))  ⇔Σ_(n≥1) (((√π).((1/2))_n .(1+i)_n (1−i)_n )/((i)_n (−i)_n )).(1/(n!))  =(√π)  (  _3 F_2 ((1/2),(1+i),1−i;i,−i;[1])−1)  Wher _3 F_2  is generealized Hyper geometric Function

$$\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right).....\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\pi}.\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} \\ $$$${n}^{\mathrm{2}} +\mathrm{1}=\left({n}−{i}\right)\left({n}+{i}\right) \\ $$$$\Gamma\left({n}+\mathrm{1}\right)={n}! \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} .\sqrt{\pi}}{\left({n}+{i}\right)\left({n}−{i}\right)} \\ $$$$\left({n}+{i}\right)=\frac{\left({i}\right)_{{n}} }{\left(\mathrm{1}+{i}\right)_{{n}} } \\ $$$$\Leftrightarrow\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\sqrt{\pi}.\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} .\left(\mathrm{1}+{i}\right)_{{n}} \left(\mathrm{1}−{i}\right)_{{n}} }{\left({i}\right)_{{n}} \left(−{i}\right)_{{n}} }.\frac{\mathrm{1}}{{n}!} \\ $$$$=\sqrt{\pi}\:\:\left(\:\:_{\mathrm{3}} {F}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}},\left(\mathrm{1}+{i}\right),\mathrm{1}−{i};{i},−{i};\left[\mathrm{1}\right]\right)−\mathrm{1}\right) \\ $$$${Wher}\:_{\mathrm{3}} {F}_{\mathrm{2}} \:{is}\:{generealized}\:{Hyper}\:{geometric}\:{Function} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com