Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 141017 by 777316 last updated on 14/May/21

Commented by mnjuly1970 last updated on 15/May/21

  hello mr :    what “font“ and “ app“ did you   use to write math??

$$\:\:{hello}\:{mr}\:: \\ $$$$\:\:{what}\:``{font}``\:{and}\:``\:{app}``\:{did}\:{you} \\ $$$$\:{use}\:{to}\:{write}\:{math}?? \\ $$$$\:\: \\ $$

Answered by mnjuly1970 last updated on 14/May/21

      a_n : =^(x^n =t) ∫_0 ^( 1) ((ln(1−t))/t^(1/n) )((1/n)t^((1/n)−1) )dt            =(1/n)∫_0 ^( 1) ((ln(1−t))/t)dt=((−li_2 (1))/n)=((−π^2 )/(6n))        𝛗:=Σ_(n=1) ^∞ (a_n /n) =((−π^2 )/6)Σ_(n=1) ^∞ (1/n^2 ) =((−π^4 )/(36)) ...✓

$$\:\:\:\:\:\:{a}_{{n}} :\:\overset{{x}^{{n}} ={t}} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}^{\frac{\mathrm{1}}{{n}}} }\left(\frac{\mathrm{1}}{{n}}{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}=\frac{−{li}_{\mathrm{2}} \left(\mathrm{1}\right)}{{n}}=\frac{−\pi^{\mathrm{2}} }{\mathrm{6}{n}} \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}_{{n}} }{{n}}\:=\frac{−\pi^{\mathrm{2}} }{\mathrm{6}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{−\pi^{\mathrm{4}} }{\mathrm{36}}\:...\checkmark \\ $$

Answered by Dwaipayan Shikari last updated on 14/May/21

∫_0 ^1 ((log(1−x^n ))/x)dx   x^n =u  =(1/n)∫_0 ^1 ((log(1−u))/u)du=−(π^2 /(6n))  Σ_(n=1) ^∞ −(π^2 /(6n^2 ))=−(π^4 /(36))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left(\mathrm{1}−{x}^{{n}} \right)}{{x}}{dx}\:\:\:{x}^{{n}} ={u} \\ $$$$=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left(\mathrm{1}−{u}\right)}{{u}}{du}=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}{n}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}{n}^{\mathrm{2}} }=−\frac{\pi^{\mathrm{4}} }{\mathrm{36}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com