Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 140603 by BHOOPENDRA last updated on 10/May/21

Commented by BHOOPENDRA last updated on 10/May/21

mr.W sir?

$${mr}.{W}\:{sir}? \\ $$

Answered by mr W last updated on 10/May/21

(1)  m_1 v_1 sin θ_1 =m_2 v_2 sin θ_2   m_1 v_1 cos θ_1 +m_2 v_2 cos θ_2 =m_1 u  (1/2)m_1 v_1 ^2 +(1/2)m_2 v_2 ^2 =(1/2)m_1 u^2   sin θ_2 =((m_1 v_1 sin θ_1 )/(m_2 v_2 ))   ...(i)  cos θ_2 =((m_1 (u−v_1 cos θ_1 ))/(m_2 v_2 ))   ...(ii)  tan θ_2 =((v_1 sin θ_1 )/(u−v_1 cos θ_1 ))   ...(iii)  ((m_1 ^2 v_1 ^2 sin^2  θ_1 )/(m_2 ^2 v_2 ^2 ))+((m_1 ^2 (u−v_1 cos θ_1 )^2 )/(m_2 ^2 v_2 ^2 ))=1  m_1 ^2 v_1 ^2 +m_1 ^2 u^2 −2m_1 ^2 uv_1 cos θ_1 =m_2 ^2 v_2 ^2   m_1 ^2 v_1 ^2 +m_1 ^2 u^2 −2m_1 ^2 uv_1 cos θ_1 =m_2 m_1 (u^2 −v_1 ^2 )  v_1 ^2 +u^2 −2uv_1 cos θ_1 =(u^2 −v_1 ^2 )(m_2 /m_1 )  cos θ_1 =(1/2)[(v_1 /u)(1+(m_2 /m_1 ))+(u/v_1 )(1−(m_2 /m_1 ))]  let k=(m_2 /m_1 )<1, λ=(v_1 /u)  cos θ_1 =(1/2)[λ(1+k)+(1/λ)(1−k)]   ...(iv)              ≥(√(1−k^2 ))  i.e. θ_1 ≤cos^(−1) (√(1−k^2 ))=cos^(−1) (√(1−((m_2 /m_1 ))^2 ))  or θ_(1,max) =cos^(−1) (√(1−((m_2 /m_1 ))^2 ))

$$\left(\mathrm{1}\right) \\ $$$${m}_{\mathrm{1}} {v}_{\mathrm{1}} \mathrm{sin}\:\theta_{\mathrm{1}} ={m}_{\mathrm{2}} {v}_{\mathrm{2}} \mathrm{sin}\:\theta_{\mathrm{2}} \\ $$$${m}_{\mathrm{1}} {v}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} +{m}_{\mathrm{2}} {v}_{\mathrm{2}} \mathrm{cos}\:\theta_{\mathrm{2}} ={m}_{\mathrm{1}} {u} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {v}_{\mathrm{1}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {u}^{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta_{\mathrm{2}} =\frac{{m}_{\mathrm{1}} {v}_{\mathrm{1}} \mathrm{sin}\:\theta_{\mathrm{1}} }{{m}_{\mathrm{2}} {v}_{\mathrm{2}} }\:\:\:...\left({i}\right) \\ $$$$\mathrm{cos}\:\theta_{\mathrm{2}} =\frac{{m}_{\mathrm{1}} \left({u}−{v}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} \right)}{{m}_{\mathrm{2}} {v}_{\mathrm{2}} }\:\:\:...\left({ii}\right) \\ $$$$\mathrm{tan}\:\theta_{\mathrm{2}} =\frac{{v}_{\mathrm{1}} \mathrm{sin}\:\theta_{\mathrm{1}} }{{u}−{v}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} }\:\:\:...\left({iii}\right) \\ $$$$\frac{{m}_{\mathrm{1}} ^{\mathrm{2}} {v}_{\mathrm{1}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} }{{m}_{\mathrm{2}} ^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} }+\frac{{m}_{\mathrm{1}} ^{\mathrm{2}} \left({u}−{v}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} \right)^{\mathrm{2}} }{{m}_{\mathrm{2}} ^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} }=\mathrm{1} \\ $$$${m}_{\mathrm{1}} ^{\mathrm{2}} {v}_{\mathrm{1}} ^{\mathrm{2}} +{m}_{\mathrm{1}} ^{\mathrm{2}} {u}^{\mathrm{2}} −\mathrm{2}{m}_{\mathrm{1}} ^{\mathrm{2}} {uv}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} ={m}_{\mathrm{2}} ^{\mathrm{2}} {v}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${m}_{\mathrm{1}} ^{\mathrm{2}} {v}_{\mathrm{1}} ^{\mathrm{2}} +{m}_{\mathrm{1}} ^{\mathrm{2}} {u}^{\mathrm{2}} −\mathrm{2}{m}_{\mathrm{1}} ^{\mathrm{2}} {uv}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} ={m}_{\mathrm{2}} {m}_{\mathrm{1}} \left({u}^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right) \\ $$$${v}_{\mathrm{1}} ^{\mathrm{2}} +{u}^{\mathrm{2}} −\mathrm{2}{uv}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} =\left({u}^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right)\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} } \\ $$$$\mathrm{cos}\:\theta_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{v}_{\mathrm{1}} }{{u}}\left(\mathrm{1}+\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)+\frac{{u}}{{v}_{\mathrm{1}} }\left(\mathrm{1}−\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)\right] \\ $$$${let}\:{k}=\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }<\mathrm{1},\:\lambda=\frac{{v}_{\mathrm{1}} }{{u}} \\ $$$$\mathrm{cos}\:\theta_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\lambda\left(\mathrm{1}+{k}\right)+\frac{\mathrm{1}}{\lambda}\left(\mathrm{1}−{k}\right)\right]\:\:\:...\left({iv}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\geqslant\sqrt{\mathrm{1}−{k}^{\mathrm{2}} } \\ $$$${i}.{e}.\:\theta_{\mathrm{1}} \leqslant\mathrm{cos}^{−\mathrm{1}} \sqrt{\mathrm{1}−{k}^{\mathrm{2}} }=\mathrm{cos}^{−\mathrm{1}} \sqrt{\mathrm{1}−\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} } \\ $$$${or}\:\theta_{\mathrm{1},{max}} =\mathrm{cos}^{−\mathrm{1}} \sqrt{\mathrm{1}−\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\mathrm{2}} } \\ $$

Commented by mr W last updated on 10/May/21

(2)  tan θ_2 =((v_1 sin θ_1 )/(u−v_1 cos θ_1 ))  θ_1 =90°  tan θ_2 =(v_1 /u)=λ  cos θ_1 =(1/2)[λ(1+k)+(1/λ)(1−k)]=0  ⇒λ(k+1)=(1/λ)(k−1)  ⇒λ^2 =((k−1)/(k+1))  ⇒tan θ_2 =λ=(√((k−1)/(k+1)))  ⇒θ_2 =tan^(−1) (√((k−1)/(k+1)))=tan^(−1) (√((m_2 −m_1 )/(m_2 +m_1 )))

$$\left(\mathrm{2}\right) \\ $$$$\mathrm{tan}\:\theta_{\mathrm{2}} =\frac{{v}_{\mathrm{1}} \mathrm{sin}\:\theta_{\mathrm{1}} }{{u}−{v}_{\mathrm{1}} \mathrm{cos}\:\theta_{\mathrm{1}} } \\ $$$$\theta_{\mathrm{1}} =\mathrm{90}° \\ $$$$\mathrm{tan}\:\theta_{\mathrm{2}} =\frac{{v}_{\mathrm{1}} }{{u}}=\lambda \\ $$$$\mathrm{cos}\:\theta_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\lambda\left(\mathrm{1}+{k}\right)+\frac{\mathrm{1}}{\lambda}\left(\mathrm{1}−{k}\right)\right]=\mathrm{0} \\ $$$$\Rightarrow\lambda\left({k}+\mathrm{1}\right)=\frac{\mathrm{1}}{\lambda}\left({k}−\mathrm{1}\right) \\ $$$$\Rightarrow\lambda^{\mathrm{2}} =\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta_{\mathrm{2}} =\lambda=\sqrt{\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}} \\ $$$$\Rightarrow\theta_{\mathrm{2}} =\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}}=\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{m}_{\mathrm{2}} −{m}_{\mathrm{1}} }{{m}_{\mathrm{2}} +{m}_{\mathrm{1}} }} \\ $$

Commented by mr W last updated on 10/May/21

Commented by BHOOPENDRA last updated on 10/May/21

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com