Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 140053 by ajfour last updated on 03/May/21

Commented by ajfour last updated on 03/May/21

Find radius of largest sphere   within the cuboid and between  the shown triangular planes.

$${Find}\:{radius}\:{of}\:{largest}\:{sphere}\: \\ $$$${within}\:{the}\:{cuboid}\:{and}\:{between} \\ $$$${the}\:{shown}\:{triangular}\:{planes}. \\ $$

Commented by MJS_new last updated on 03/May/21

the planes are parallel ⇒ diameter of sphere =  = distance of planes

$$\mathrm{the}\:\mathrm{planes}\:\mathrm{are}\:\mathrm{parallel}\:\Rightarrow\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{sphere}\:= \\ $$$$=\:\mathrm{distance}\:\mathrm{of}\:\mathrm{planes} \\ $$

Commented by mr W last updated on 03/May/21

2R=(1/( (√((1/a^2 )+(1/b^2 )+(1/c^2 )))))  ⇒R=(1/( 2(√((1/a^2 )+(1/b^2 )+(1/c^2 )))))

$$\mathrm{2}{R}=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com