Question Number 139973 by ajfour last updated on 02/May/21 | ||
Commented by ajfour last updated on 02/May/21 | ||
$${Find}\:{area}\:{of}\:\bigtriangleup\:{with}\:{sides}\: \\ $$$${a},\:{b},\:{c}\:{in}\:{terms}\:{of}\:{p},\:{q},\:{r}\:{only}. \\ $$ | ||
Answered by ajfour last updated on 02/May/21 | ||
$${a}^{\mathrm{2}} ={q}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right) \\ $$$$\bigtriangleup=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{3}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${a}^{\mathrm{2}} {b}^{\mathrm{2}} =\left({q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} +{p}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:={q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} +{r}^{\mathrm{4}} \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \\ $$$$\:\:\:={p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} +\mathrm{2}\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right) \\ $$$$\:\:=\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\bigtriangleup=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{4}\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right)+\mathrm{4}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\bigtriangleup=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} } \\ $$$$\left({got}\:{it}\:{right}...{now}\right) \\ $$ | ||
Commented by ajfour last updated on 02/May/21 | ||
$$\bigtriangleup^{\mathrm{2}} ={s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right) \\ $$$$\Rightarrow\:\mathrm{16}\bigtriangleup^{\mathrm{2}} =\left({a}+{b}+{c}\right)\left({b}+{c}−{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\left({c}+{a}−{b}\right)\left({a}+{b}−{c}\right) \\ $$$$=\left({a}+{b}+{c}\right)\left({b}+{c}−{a}\right)\left\{{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right\} \\ $$$$=\left\{\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right\}\left\{{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right\} \\ $$$$=\mathrm{2}{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} −{a}^{\mathrm{4}} \\ $$$$=\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right) \\ $$$$=\mathrm{4}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\bigtriangleup=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{4}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${a}^{\mathrm{2}} {b}^{\mathrm{2}} =\left({q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} +{p}^{\mathrm{2}} \right) \\ $$$$\mathrm{4}\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{4}\left\{\mathrm{3}\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} \right\} \\ $$$$\:\:=\mathrm{4}\left\{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} +{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right\} \\ $$$$\bigtriangleup=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} } \\ $$ | ||
Answered by mr W last updated on 02/May/21 | ||
Commented by mr W last updated on 02/May/21 | ||
$${eqn}.\:{of}\:{plane}\:{ABC}: \\ $$$$\frac{{x}}{{p}}+\frac{{y}}{{q}}+\frac{{z}}{{r}}=\mathrm{1} \\ $$$${distance}\:{from}\:{origin}\:{to}\:{plane}: \\ $$$${OH}={h}=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{p}^{\mathrm{2}} }+\frac{\mathrm{1}}{{q}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }}}=\frac{{pqr}}{\:\sqrt{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} }} \\ $$$${volume}\:{of}\:{pyramid}\:{O}−{ABC}: \\ $$$${with}\:\Delta{ABC}\:{as}\:{base}: \\ $$$${V}=\frac{\Delta_{{ABC}} {h}}{\mathrm{3}} \\ $$$${with}\:\Delta{OBC}\:{as}\:{base}: \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{{qr}}{\mathrm{2}}×{p} \\ $$$$\frac{\Delta_{{ABC}} {h}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{{qr}}{\mathrm{2}}×{p} \\ $$$$\Rightarrow\Delta_{{ABC}} =\frac{{pqr}}{\mathrm{2}{h}}=\frac{{pqr}}{\mathrm{2}×\frac{{pqr}}{\:\sqrt{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} }}} \\ $$$$\Rightarrow\Delta_{{ABC}} =\frac{\sqrt{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} }}{\mathrm{2}} \\ $$ | ||
Commented by ajfour last updated on 02/May/21 | ||
Thanks Sir! | ||
Commented by ajfour last updated on 21/May/21 | ||
what's the expression for circumradius of ∆ABC in terms of p, q, r Sir ? | ||
Answered by ajfour last updated on 02/May/21 | ||