Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 138329 by JulioCesar last updated on 12/Apr/21

Answered by Ñï= last updated on 12/Apr/21

∫(dx/(sin^4 x+cos^4 x))=∫(dx/(1−2sin^2 xcos^2 x))=∫(dx/(1−(1/2)sin^2  2x))  =∫((csc^2 2xd)/(csc^2 2x−(1/2)))=−∫((d(cot 2x))/(2cot^2 2x+1))=−tan^(−1) ((√2)cot 2x)+C

$$\int\frac{{dx}}{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}}=\int\frac{{dx}}{\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}}=\int\frac{{dx}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}} \\ $$$$=\int\frac{{csc}^{\mathrm{2}} \mathrm{2}{xd}}{{csc}^{\mathrm{2}} \mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}}=−\int\frac{{d}\left({cot}\:\mathrm{2}{x}\right)}{\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}{x}+\mathrm{1}}=−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\mathrm{cot}\:\mathrm{2}{x}\right)+{C} \\ $$

Commented by JulioCesar last updated on 12/Apr/21

thank sir!

$${thank}\:{sir}! \\ $$

Answered by Ñï= last updated on 12/Apr/21

∫(dx/(sin^4 x+cos^4 x))=∫((tan^2 x+1)/(tan^4 x+1))d(tan x)  =∫((u^2 +1)/(u^4 +1))du=∫((1+(1/u^2 ))/(u^2 +(1/u^2 )))du=∫((d(u−(1/u)))/((u−(1/u))^2 +2))  =(1/( (√2)))tan^(−1) ((u−(1/u))/( (√2)))+C=(1/( (√2)))tan^(−1) ((tan x−cot x)/( (√2)))+C

$$\int\frac{{dx}}{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}}=\int\frac{\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{1}}{\mathrm{tan}\:^{\mathrm{4}} {x}+\mathrm{1}}{d}\left(\mathrm{tan}\:{x}\right) \\ $$$$=\int\frac{{u}^{\mathrm{2}} +\mathrm{1}}{{u}^{\mathrm{4}} +\mathrm{1}}{du}=\int\frac{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{du}=\int\frac{{d}\left({u}−\frac{\mathrm{1}}{{u}}\right)}{\left({u}−\frac{\mathrm{1}}{{u}}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{{u}−\frac{\mathrm{1}}{{u}}}{\:\sqrt{\mathrm{2}}}+{C}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{tan}\:{x}−\mathrm{cot}\:{x}}{\:\sqrt{\mathrm{2}}}+{C} \\ $$

Answered by MJS_new last updated on 12/Apr/21

∫(dx/(sin^4  x +cos^4  x))=       [t=tan 2x → dx=(1/2)cos^2  2x dt]  =∫(dt/(t^2 +2))=((√2)/2)arctan (((√2)t)/2) =((√2)/2)arctan (((√2)tan 2x)/( 2)) +C

$$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{4}} \:{x}\:+\mathrm{cos}^{\mathrm{4}} \:{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\mathrm{2}{x}\:\rightarrow\:{dx}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}{x}\:{dt}\right] \\ $$$$=\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{2}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{2}}{t}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{2}}\mathrm{tan}\:\mathrm{2}{x}}{\:\mathrm{2}}\:+{C} \\ $$

Commented by JulioCesar last updated on 12/Apr/21

Thank sir!

$${Thank}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com