Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 138175 by ajfour last updated on 10/Apr/21

Commented by ajfour last updated on 10/Apr/21

If the yellow and blue areas are  equal, find edge length of the  blue square. (radius of circle=1)

$${If}\:{the}\:{yellow}\:{and}\:{blue}\:{areas}\:{are} \\ $$$${equal},\:{find}\:{edge}\:{length}\:{of}\:{the} \\ $$$${blue}\:{square}.\:\left({radius}\:{of}\:{circle}=\mathrm{1}\right) \\ $$

Answered by mr W last updated on 10/Apr/21

Commented by mr W last updated on 11/Apr/21

please sir! i found no better way to  solve.

$${please}\:{sir}!\:{i}\:{found}\:{no}\:{better}\:{way}\:{to} \\ $$$${solve}. \\ $$

Commented by mr W last updated on 11/Apr/21

yellow segment area=(1/2)(2θ−sin 2θ)                               =θ−sin θ cos θ  blue square  area=a^2   θ−sin θ cos θ=a^2   ⇒a=(√(θ−sin θ cos θ))    (√(1^2 −((a/2))^2 ))+1×cos θ=a  (√(4−a^2 ))+2cos θ=2a  ⇒(√(4−θ+sin θ cos θ))+2cos θ=2(√(θ−sin θ cos θ))  ⇒θ≈1.3496 (=77.326°)  ⇒a≈1.0656

$${yellow}\:{segment}\:{area}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\theta−\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\theta−\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$${blue}\:{square}\:\:{area}={a}^{\mathrm{2}} \\ $$$$\theta−\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta={a}^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\sqrt{\theta−\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$$ \\ $$$$\sqrt{\mathrm{1}^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }+\mathrm{1}×\mathrm{cos}\:\theta={a} \\ $$$$\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }+\mathrm{2cos}\:\theta=\mathrm{2}{a} \\ $$$$\Rightarrow\sqrt{\mathrm{4}−\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}+\mathrm{2cos}\:\theta=\mathrm{2}\sqrt{\theta−\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\theta\approx\mathrm{1}.\mathrm{3496}\:\left(=\mathrm{77}.\mathrm{326}°\right) \\ $$$$\Rightarrow{a}\approx\mathrm{1}.\mathrm{0656} \\ $$

Commented by ajfour last updated on 11/Apr/21

Thank you sir, the previous  cube-cylinder question i will  attempt again sir, to match with your solution.

$${Thank}\:{you}\:{sir},\:{the}\:{previous} \\ $$$${cube}-{cylinder}\:{question}\:{i}\:{will} \\ $$$${attempt}\:{again}\:{sir},\:{to}\:{match}\:{with}\:{your}\:{solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com