Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137876 by Bekzod Jumayev last updated on 07/Apr/21

Answered by MJS_new last updated on 07/Apr/21

∫(dx/((x^3 −1)^(1/3) ))=       [t=(x/((x^3 −1)^(1/3) )) → dx=−(x^3 −1)^(4/3) ]  =∫(dt/(1−t^3 ))=∫(dt/((1−t)(1+t+t^2 )))=  =(1/3)∫(dt/(1−t))+(1/6)∫((2t+1)/(t^2 +t+1))dt+(1/2)∫(dt/(t^2 +t+1))=  =−(1/3)ln (1−t) +(1/6)ln (t^2 +t+1) +((√3)/3)arctan (((√3)(2t+1))/3) =  =(1/6)ln ((t^2 +t+1)/((t−1)^2 )) +((√3)/3)arctan (((√3)(2t+1))/3)  the borders: 2 → (2/7^(1/3) ) ; +∞ → 1  ⇒ integral doesn′t converge

$$\int\frac{{dx}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} }= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} }\:\rightarrow\:{dx}=−\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{4}/\mathrm{3}} \right] \\ $$$$=\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{3}} }=\int\frac{{dt}}{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} \right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dt}}{\mathrm{1}−{t}}+\frac{\mathrm{1}}{\mathrm{6}}\int\frac{\mathrm{2}{t}+\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{dt}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{t}\right)\:+\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\frac{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}} \\ $$$$\mathrm{the}\:\mathrm{borders}:\:\mathrm{2}\:\rightarrow\:\frac{\mathrm{2}}{\mathrm{7}^{\mathrm{1}/\mathrm{3}} }\:;\:+\infty\:\rightarrow\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{integral}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{converge} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com