Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137139 by peter frank last updated on 30/Mar/21

Answered by Dwaipayan Shikari last updated on 30/Mar/21

∫_1 ^e (1/((1+log(x))))−(1/((1+log(x))^2 ))dx     log(x)=t  =∫_0 ^1 (e^t /((1+t)))−(e^t /((1+t)^2 ))dt  =[(e^t /((1+t)))]_0 ^1 =(e/2)−1  Generally ∫e^t (f(t)+f′(t))dt=e^t f(t)+C

$$\int_{\mathrm{1}} ^{{e}} \frac{\mathrm{1}}{\left(\mathrm{1}+{log}\left({x}\right)\right)}−\frac{\mathrm{1}}{\left(\mathrm{1}+{log}\left({x}\right)\right)^{\mathrm{2}} }{dx}\:\:\:\:\:{log}\left({x}\right)={t} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{{t}} }{\left(\mathrm{1}+{t}\right)}−\frac{{e}^{{t}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$=\left[\frac{{e}^{{t}} }{\left(\mathrm{1}+{t}\right)}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{{e}}{\mathrm{2}}−\mathrm{1} \\ $$$$\boldsymbol{{Generally}}\:\int\boldsymbol{{e}}^{\boldsymbol{{t}}} \left(\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)+\boldsymbol{{f}}'\left(\boldsymbol{{t}}\right)\right)\boldsymbol{{dt}}=\boldsymbol{{e}}^{\boldsymbol{{t}}} \boldsymbol{{f}}\left(\boldsymbol{{t}}\right)+{C} \\ $$

Commented by Ar Brandon last updated on 30/Mar/21

∫e^(g(x)) [f(x)g′(x)+f ′(x)]dx=e^(g(x)) f(x)+C

$$\int\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right)} \left[\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{g}}'\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{f}}\:'\left(\boldsymbol{\mathrm{x}}\right)\right]\boldsymbol{\mathrm{dx}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right)} \boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathcal{C}} \\ $$

Commented by Dwaipayan Shikari last updated on 30/Mar/21

Yes more general!

$${Yes}\:{more}\:{general}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com