Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 135952 by Dwaipayan Shikari last updated on 17/Mar/21

Commented by Dwaipayan Shikari last updated on 17/Mar/21

It isArchimedes′s Nothing Grinder. We can move this back  and forth and sideways .Prove that the tip on various  positions on that hand of the wodden grinder creates   various shapes of ellipses

$${It}\:{isArchimedes}'{s}\:{Nothing}\:{Grinder}.\:{We}\:{can}\:{move}\:{this}\:{back} \\ $$$${and}\:{forth}\:{and}\:{sideways}\:.{Prove}\:{that}\:{the}\:{tip}\:{on}\:{various} \\ $$$${positions}\:{on}\:{that}\:{hand}\:{of}\:{the}\:{wodden}\:{grinder}\:{creates}\: \\ $$$${various}\:{shapes}\:{of}\:{ellipses} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Mar/21

Take a look at this animation https://en.wikipedia.org/wiki/File:Trammel_of_Archimedes_Large.gif

Answered by mr W last updated on 17/Mar/21

Commented by mr W last updated on 17/Mar/21

say  B(t,0)  A(0,s)  s^2 +t^2 =p^2   x_C =((q+p)/p)t ⇒t=(p/(p+q))x_C   y_C =−(q/p)s ⇒s=−(p/q)y_C   ((p/(p+q))x_C )^2 +(−(p/q)y_C )^2 =p^2   (x_C ^2 /((p+q)^2 ))+(y_C ^2 /q^2 )=1  or  (x^2 /((p+q)^2 ))+(y^2 /q^2 )=1  i.e. the locus of C is an ellipse with  semiaxses:  a=p+q  b=q

$${say} \\ $$$${B}\left({t},\mathrm{0}\right) \\ $$$${A}\left(\mathrm{0},{s}\right) \\ $$$${s}^{\mathrm{2}} +{t}^{\mathrm{2}} ={p}^{\mathrm{2}} \\ $$$${x}_{{C}} =\frac{{q}+{p}}{{p}}{t}\:\Rightarrow{t}=\frac{{p}}{{p}+{q}}{x}_{{C}} \\ $$$${y}_{{C}} =−\frac{{q}}{{p}}{s}\:\Rightarrow{s}=−\frac{{p}}{{q}}{y}_{{C}} \\ $$$$\left(\frac{{p}}{{p}+{q}}{x}_{{C}} \right)^{\mathrm{2}} +\left(−\frac{{p}}{{q}}{y}_{{C}} \right)^{\mathrm{2}} ={p}^{\mathrm{2}} \\ $$$$\frac{{x}_{{C}} ^{\mathrm{2}} }{\left({p}+{q}\right)^{\mathrm{2}} }+\frac{{y}_{{C}} ^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or} \\ $$$$\frac{{x}^{\mathrm{2}} }{\left({p}+{q}\right)^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\mathrm{1} \\ $$$${i}.{e}.\:{the}\:{locus}\:{of}\:{C}\:{is}\:{an}\:{ellipse}\:{with} \\ $$$${semiaxses}: \\ $$$${a}={p}+{q} \\ $$$${b}={q} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Mar/21

Thanks sir! i didn′t think that the proof is simple

$${Thanks}\:{sir}!\:{i}\:{didn}'{t}\:{think}\:{that}\:{the}\:{proof}\:{is}\:{simple} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com