Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134604 by mohammad17 last updated on 05/Mar/21

Commented by mohammad17 last updated on 05/Mar/21

how can solve this

$${how}\:{can}\:{solve}\:{this} \\ $$

Commented by mohammad17 last updated on 05/Mar/21

???????

$$??????? \\ $$

Answered by mathmax by abdo last updated on 06/Mar/21

z^n  =e^(iθ )  ⇒z=e^((iθ)/n)   and o≤(θ/n)≤(π/n)  ∫_C ((z+2)/z)dz =∫_C dz +∫_C (2/z)dz  =∫_0 ^π  (i/n)e^((iθ)/n)  dθ  +∫_0 ^π  2 e^(−((iθ)/n))  (i/n)e^((iθ)/n)  dθ  =(i/n)(n/i)[e^((iθ)/n) ]_0 ^π    −(i/n)((2n)/i)[ e^(−((iθ)/n)) ]_0 ^π   =e^((iπ)/n) −1 −2(e^(−((iπ)/n)) −1) =e^((iπ)/n) −2e^(−((iπ)/n))  +1

$$\mathrm{z}^{\mathrm{n}} \:=\mathrm{e}^{\mathrm{i}\theta\:} \:\Rightarrow\mathrm{z}=\mathrm{e}^{\frac{\mathrm{i}\theta}{\mathrm{n}}} \:\:\mathrm{and}\:\mathrm{o}\leqslant\frac{\theta}{\mathrm{n}}\leqslant\frac{\pi}{\mathrm{n}} \\ $$$$\int_{\mathrm{C}} \frac{\mathrm{z}+\mathrm{2}}{\mathrm{z}}\mathrm{dz}\:=\int_{\mathrm{C}} \mathrm{dz}\:+\int_{\mathrm{C}} \frac{\mathrm{2}}{\mathrm{z}}\mathrm{dz} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{i}}{\mathrm{n}}\mathrm{e}^{\frac{\mathrm{i}\theta}{\mathrm{n}}} \:\mathrm{d}\theta\:\:+\int_{\mathrm{0}} ^{\pi} \:\mathrm{2}\:\mathrm{e}^{−\frac{\mathrm{i}\theta}{\mathrm{n}}} \:\frac{\mathrm{i}}{\mathrm{n}}\mathrm{e}^{\frac{\mathrm{i}\theta}{\mathrm{n}}} \:\mathrm{d}\theta \\ $$$$=\frac{\mathrm{i}}{\mathrm{n}}\frac{\mathrm{n}}{\mathrm{i}}\left[\mathrm{e}^{\frac{\mathrm{i}\theta}{\mathrm{n}}} \right]_{\mathrm{0}} ^{\pi} \:\:\:−\frac{\mathrm{i}}{\mathrm{n}}\frac{\mathrm{2n}}{\mathrm{i}}\left[\:\mathrm{e}^{−\frac{\mathrm{i}\theta}{\mathrm{n}}} \right]_{\mathrm{0}} ^{\pi} \\ $$$$=\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{n}}} −\mathrm{1}\:−\mathrm{2}\left(\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{n}}} −\mathrm{1}\right)\:=\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{n}}} −\mathrm{2e}^{−\frac{\mathrm{i}\pi}{\mathrm{n}}} \:+\mathrm{1} \\ $$

Commented by mohammad17 last updated on 06/Mar/21

thank you sir can you solve all questio please

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{solve}\:{all}\:{questio}\:{please} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com