Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 134417 by deleteduser12 last updated on 03/Mar/21

Answered by som(math1967) last updated on 03/Mar/21

((2^(n−1) 2sinθcosθ.cos2θ...cos2^(n−1) θ)/(sinθ))  ((2^(n−2) .2sin2θcos2θ.cos2^2 θ.....)/(sinθ))  ((2^(n−3) 2sin2^2 θcos2^2 θ...)/(sinθ))  ((sin2^n θ)/(sinθ))  now given θ=(π/(2^n +1))   2^n θ=π−θ  sin2^n θ=sin(π−θ)=sinθ  ∴((sin2^n θ)/(sinθ))=((sinθ)/(sinθ))=1

$$\frac{\mathrm{2}^{{n}−\mathrm{1}} \mathrm{2}{sin}\theta{cos}\theta.{cos}\mathrm{2}\theta...{cos}\mathrm{2}^{{n}−\mathrm{1}} \theta}{{sin}\theta} \\ $$$$\frac{\mathrm{2}^{{n}−\mathrm{2}} .\mathrm{2}{sin}\mathrm{2}\theta{cos}\mathrm{2}\theta.{cos}\mathrm{2}^{\mathrm{2}} \theta.....}{{sin}\theta} \\ $$$$\frac{\mathrm{2}^{{n}−\mathrm{3}} \mathrm{2}{sin}\mathrm{2}^{\mathrm{2}} \theta{cos}\mathrm{2}^{\mathrm{2}} \theta...}{{sin}\theta} \\ $$$$\frac{{sin}\mathrm{2}^{{n}} \theta}{{sin}\theta} \\ $$$${now}\:{given}\:\theta=\frac{\pi}{\mathrm{2}^{{n}} +\mathrm{1}} \\ $$$$\:\mathrm{2}^{{n}} \theta=\pi−\theta \\ $$$${sin}\mathrm{2}^{{n}} \theta={sin}\left(\pi−\theta\right)={sin}\theta \\ $$$$\therefore\frac{{sin}\mathrm{2}^{{n}} \theta}{{sin}\theta}=\frac{{sin}\theta}{{sin}\theta}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com