Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 134037 by benjo_mathlover last updated on 26/Feb/21

Answered by john_santu last updated on 27/Feb/21

49^(303) .3993^(202) .39^(606)  =  (7^2 )^(303) . 3^(606) .13^(606)  .3^(202) .11^(606)  =  (7×13×11)^(606) . 3^(808)  =  1001^(606)  .(3^(200) )^4 .3^8    [ note by 3^(400)  ≡ 1 mod 1000 ]  ≡ 1×1×3^8  (mod 1000)  ≡ 6561 (mod 1000)  ≡ 561 (mod 1000).  Hence it′s the last three digits  are 561.

$$\mathrm{49}^{\mathrm{303}} .\mathrm{3993}^{\mathrm{202}} .\mathrm{39}^{\mathrm{606}} \:= \\ $$$$\left(\mathrm{7}^{\mathrm{2}} \right)^{\mathrm{303}} .\:\mathrm{3}^{\mathrm{606}} .\mathrm{13}^{\mathrm{606}} \:.\mathrm{3}^{\mathrm{202}} .\mathrm{11}^{\mathrm{606}} \:= \\ $$$$\left(\mathrm{7}×\mathrm{13}×\mathrm{11}\right)^{\mathrm{606}} .\:\mathrm{3}^{\mathrm{808}} \:= \\ $$$$\mathrm{1001}^{\mathrm{606}} \:.\left(\mathrm{3}^{\mathrm{200}} \right)^{\mathrm{4}} .\mathrm{3}^{\mathrm{8}} \: \\ $$$$\left[\:{note}\:{by}\:\mathrm{3}^{\mathrm{400}} \:\equiv\:\mathrm{1}\:{mod}\:\mathrm{1000}\:\right] \\ $$$$\equiv\:\mathrm{1}×\mathrm{1}×\mathrm{3}^{\mathrm{8}} \:\left({mod}\:\mathrm{1000}\right) \\ $$$$\equiv\:\mathrm{6561}\:\left({mod}\:\mathrm{1000}\right) \\ $$$$\equiv\:\mathrm{561}\:\left({mod}\:\mathrm{1000}\right). \\ $$$${Hence}\:{it}'{s}\:{the}\:{last}\:{three}\:{digits} \\ $$$${are}\:\mathrm{561}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com