Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133905 by mohammad17 last updated on 25/Feb/21

Answered by Dwaipayan Shikari last updated on 25/Feb/21

∫_0 ^∞ ∫_0 ^∞ e^(−(x^2 /3)−(y^2 /4)) dxdy  =(√(3π)) .2(√π) =2(√3)π

$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}} {dxdy} \\ $$$$=\sqrt{\mathrm{3}\pi}\:.\mathrm{2}\sqrt{\pi}\:=\mathrm{2}\sqrt{\mathrm{3}}\pi \\ $$

Answered by mathmax by abdo last updated on 25/Feb/21

I=∫∫_R^+^2      e^(−(x^2 /3)−(y^2 /4))  dxdy with diffeomorphism   { ((x=(√3)rcosθ)),((y=2rsinθ   we get)) :}  I =∫_0 ^∞  ∫_0 ^(π/2)  e^(−r^2 ) (2(√3))r drdθ  =(π/2)(2(√3)) ∫_0 ^∞  r e^(−r^2 ) dr =π(√3)[−(1/2)e^(−r^2 ) ]_0 ^∞  =((π(√3))/2)

$$\mathrm{I}=\int\int_{\mathrm{R}^{+^{\mathrm{2}} } } \:\:\:\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{4}}} \:\mathrm{dxdy}\:\mathrm{with}\:\mathrm{diffeomorphism}\:\:\begin{cases}{\mathrm{x}=\sqrt{\mathrm{3}}\mathrm{rcos}\theta}\\{\mathrm{y}=\mathrm{2rsin}\theta\:\:\:\mathrm{we}\:\mathrm{get}}\end{cases} \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} } \left(\mathrm{2}\sqrt{\mathrm{3}}\right)\mathrm{r}\:\mathrm{drd}\theta \\ $$$$=\frac{\pi}{\mathrm{2}}\left(\mathrm{2}\sqrt{\mathrm{3}}\right)\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{r}\:\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} } \mathrm{dr}\:=\pi\sqrt{\mathrm{3}}\left[−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\infty} \:=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com