Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 133840 by Algoritm last updated on 24/Feb/21

Answered by Dwaipayan Shikari last updated on 24/Feb/21

lim_(x→2) ((x^x Γ(x+1)−4Γ(3x−3))/(3Γ(x+1)−6))=((x^x (logx+1)Γ(x+1)+Γ′(x+1)x^x −12Γ′(3x−3))/(3Γ′(x+1)))  =((8(log(2)+1)+4Γ′(3)−12Γ′(3))/(3Γ′(3)))=((8(log(2)+1))/(6((3/2)−γ)))−(8/3)  =((8log(2)+8)/(9−6γ))−(8/3)         (γ=0.57721)

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{{x}} \Gamma\left({x}+\mathrm{1}\right)−\mathrm{4}\Gamma\left(\mathrm{3}{x}−\mathrm{3}\right)}{\mathrm{3}\Gamma\left({x}+\mathrm{1}\right)−\mathrm{6}}=\frac{{x}^{{x}} \left({logx}+\mathrm{1}\right)\Gamma\left({x}+\mathrm{1}\right)+\Gamma'\left({x}+\mathrm{1}\right){x}^{{x}} −\mathrm{12}\Gamma'\left(\mathrm{3}{x}−\mathrm{3}\right)}{\mathrm{3}\Gamma'\left({x}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{8}\left({log}\left(\mathrm{2}\right)+\mathrm{1}\right)+\mathrm{4}\Gamma'\left(\mathrm{3}\right)−\mathrm{12}\Gamma'\left(\mathrm{3}\right)}{\mathrm{3}\Gamma'\left(\mathrm{3}\right)}=\frac{\mathrm{8}\left({log}\left(\mathrm{2}\right)+\mathrm{1}\right)}{\mathrm{6}\left(\frac{\mathrm{3}}{\mathrm{2}}−\gamma\right)}−\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{8}{log}\left(\mathrm{2}\right)+\mathrm{8}}{\mathrm{9}−\mathrm{6}\gamma}−\frac{\mathrm{8}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\left(\gamma=\mathrm{0}.\mathrm{57721}\right) \\ $$

Commented by SLVR last updated on 13/Apr/21

mr.Dwaipayan sir...kindly tell me  x^x Γ(x+1)−4Γ(3x−3)=x^x (logx+x)Γ(x+1)+Γ′(x+1)−12Γ′(3x−3)??  please..

$${mr}.{Dwaipayan}\:{sir}...{kindly}\:{tell}\:{me} \\ $$$${x}^{{x}} \Gamma\left({x}+\mathrm{1}\right)−\mathrm{4}\Gamma\left(\mathrm{3}{x}−\mathrm{3}\right)={x}^{{x}} \left({logx}+{x}\right)\Gamma\left({x}+\mathrm{1}\right)+\Gamma'\left({x}+\mathrm{1}\right)−\mathrm{12}\Gamma'\left(\mathrm{3}{x}−\mathrm{3}\right)?? \\ $$$${please}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com