Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 133764 by liberty last updated on 24/Feb/21

Answered by EDWIN88 last updated on 24/Feb/21

 let x be a page number was counted twice  Assuming the pages start counting at 1 and  count continously up we use formula  (1+2+3+...+n)+x = 1999   ⇒x +((n(n+1))/2) = 1999 ; since x is positive   integer number  ⇒we get n = 62 , so x = 1999−((62×63)/2)  x = 1999−1953 = 46

$$\:\mathrm{let}\:\mathrm{x}\:\mathrm{be}\:\mathrm{a}\:\mathrm{page}\:\mathrm{number}\:\mathrm{was}\:\mathrm{counted}\:\mathrm{twice} \\ $$$$\mathrm{Assuming}\:\mathrm{the}\:\mathrm{pages}\:\mathrm{start}\:\mathrm{counting}\:\mathrm{at}\:\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{count}\:\mathrm{continously}\:\mathrm{up}\:\mathrm{we}\:\mathrm{use}\:\mathrm{formula} \\ $$$$\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{n}\right)+\mathrm{x}\:=\:\mathrm{1999}\: \\ $$$$\Rightarrow\mathrm{x}\:+\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\:=\:\mathrm{1999}\:;\:\mathrm{since}\:\mathrm{x}\:\mathrm{is}\:\mathrm{positive}\: \\ $$$$\mathrm{integer}\:\mathrm{number} \\ $$$$\Rightarrow\mathrm{we}\:\mathrm{get}\:\mathrm{n}\:=\:\mathrm{62}\:,\:\mathrm{so}\:\mathrm{x}\:=\:\mathrm{1999}−\frac{\mathrm{62}×\mathrm{63}}{\mathrm{2}} \\ $$$$\mathrm{x}\:=\:\mathrm{1999}−\mathrm{1953}\:=\:\mathrm{46} \\ $$

Answered by mr W last updated on 24/Feb/21

say the book has totally n pages, the  page number x is counted twice.  1≤x≤n  ((n(n+1))/2)+x=1999  1999=((n(n+1))/2)+x≥((n(n+1))/2)+1  ⇒n^2 +n−3996≤0  −62.7≤n≤62.7  1999=((n(n+1))/2)+x≤((n(n+1))/2)+n  ⇒n^2 +3n−3998≥0  n≤−64.7 or n≥61.7  ⇒n=62  ⇒x=1999−((62×63)/2)=46

$${say}\:{the}\:{book}\:{has}\:{totally}\:{n}\:{pages},\:{the} \\ $$$${page}\:{number}\:{x}\:{is}\:{counted}\:{twice}. \\ $$$$\mathrm{1}\leqslant{x}\leqslant{n} \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+{x}=\mathrm{1999} \\ $$$$\mathrm{1999}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+{x}\geqslant\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+\mathrm{1} \\ $$$$\Rightarrow{n}^{\mathrm{2}} +{n}−\mathrm{3996}\leqslant\mathrm{0} \\ $$$$−\mathrm{62}.\mathrm{7}\leqslant{n}\leqslant\mathrm{62}.\mathrm{7} \\ $$$$\mathrm{1999}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+{x}\leqslant\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+{n} \\ $$$$\Rightarrow{n}^{\mathrm{2}} +\mathrm{3}{n}−\mathrm{3998}\geqslant\mathrm{0} \\ $$$${n}\leqslant−\mathrm{64}.\mathrm{7}\:{or}\:{n}\geqslant\mathrm{61}.\mathrm{7} \\ $$$$\Rightarrow{n}=\mathrm{62} \\ $$$$\Rightarrow{x}=\mathrm{1999}−\frac{\mathrm{62}×\mathrm{63}}{\mathrm{2}}=\mathrm{46} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com