Question Number 133199 by rexford last updated on 19/Feb/21 | ||
Answered by mr W last updated on 20/Feb/21 | ||
$$\overset{\rightarrow} {\boldsymbol{{AB}}}=\left(−\mathrm{1},\mathrm{5},−\mathrm{3}\right) \\ $$$$\overset{\rightarrow} {\boldsymbol{{AC}}}=\left(−\mathrm{4},\mathrm{3},\mathrm{3}\right) \\ $$$$\overset{\rightarrow} {\boldsymbol{{AD}}}=\left(\mathrm{1},\mathrm{7},\lambda+\mathrm{1}\right) \\ $$$$\mathrm{1}×\left(\mathrm{15}+\mathrm{9}\right)−\mathrm{7}×\left(−\mathrm{3}−\mathrm{12}\right)+\left(\lambda+\mathrm{1}\right)\left(−\mathrm{3}+\mathrm{20}\right)=\mathrm{0} \\ $$$$\mathrm{24}+\mathrm{7}×\mathrm{15}+\mathrm{17}\left(\lambda+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=−\frac{\mathrm{146}}{\mathrm{17}} \\ $$ | ||
Commented by liberty last updated on 20/Feb/21 | ||
$$\mathrm{typo}.\:\mathrm{24}+\mathrm{105}+\mathrm{17}=\mathrm{105}+\mathrm{41}=\mathrm{146} \\ $$ | ||
Commented by mr W last updated on 20/Feb/21 | ||
$${yes},\:{thanks}! \\ $$ | ||
Commented by rexford last updated on 20/Feb/21 | ||
$${Thanks} \\ $$ | ||
Answered by john_santu last updated on 20/Feb/21 | ||