Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 133194 by Algoritm last updated on 19/Feb/21

Commented by Algoritm last updated on 19/Feb/21

(d^n y/dx^n )=?

$$\frac{\mathrm{d}^{\mathrm{n}} \mathrm{y}}{\mathrm{dx}^{\mathrm{n}} }=? \\ $$

Commented by mr W last updated on 20/Feb/21

very strange!  does this guy really have many  suporters or he just uses many  different IDs? each time when he  has posted a question, no matter how  good or bad the question is, the post  is immediately liked one or more  times. i can′t beleave that these likes  are seriously meant and don′t  understand what they are good for.

$${very}\:{strange}! \\ $$$${does}\:{this}\:{guy}\:{really}\:{have}\:{many} \\ $$$${suporters}\:{or}\:{he}\:{just}\:{uses}\:{many} \\ $$$${different}\:{IDs}?\:{each}\:{time}\:{when}\:{he} \\ $$$${has}\:{posted}\:{a}\:{question},\:{no}\:{matter}\:{how} \\ $$$${good}\:{or}\:{bad}\:{the}\:{question}\:{is},\:{the}\:{post} \\ $$$${is}\:\boldsymbol{{immediately}}\:{liked}\:{one}\:{or}\:{more} \\ $$$${times}.\:{i}\:{can}'{t}\:{beleave}\:{that}\:{these}\:{likes} \\ $$$${are}\:{seriously}\:{meant}\:{and}\:{don}'{t} \\ $$$${understand}\:{what}\:{they}\:{are}\:{good}\:{for}. \\ $$

Answered by Olaf last updated on 19/Feb/21

f(x) = ln(x^2 +1) = ln(x−i)+ln(x+i)  f′(x) = ((2x)/(1+x^2 )) = (1/(x−i))+(1/(x+i))  f^((n))  = (((−1)^(n−1) (n−1)!)/((x−i)^n ))+(((−1)^(n−1) (n−1)!)/((x+i)^n ))  f^((n))  = (−1)^(n−1) (n−1)![(1/((x−i)^n ))+(1/((x+i)^n ))]  f^((n))  = (−1)^n (n−1)![(((x+i)^n +(x−i)^n )/((x^2 +1)^n ))]  f^((n))  = (−1)^(n−1) (n−1)![((Σ_(k=0) ^n C_k ^n x^k i^(n−k) +Σ_(k=0) ^n C_k ^n x^k (−i)^(n−k) )/((x^2 +1)^n ))]  f^((n))  = (−1)^(n−1) (n−1)![((Σ_(k=0) ^n C_k ^n x^(n−k) (i^k +(−i)^k ))/((x^2 +1)^n ))]  f^((n))  = (−1)^(n−1) (n−1)![((Σ_(p=0) ^(⌊(n/2)⌋) C_(2p) ^n x^(n−2p) i^(2p) (1+(−1)^(2p) ))/((x^2 +1)^n ))]  f^((n))  = (−1)^(n−1) (n−1)![((Σ_(p=0) ^(⌊(n/2)⌋) C_(2p) ^n x^(n−2p) (−1)^p ×2)/((x^2 +1)^n ))]  f^((n))  = 2(−1)^(n−1) (n−1)![((Σ_(p=0) ^(⌊(n/2)⌋) (−1)^p C_(2p) ^n x^(n−2p) )/((x^2 +1)^n ))]

$${f}\left({x}\right)\:=\:\mathrm{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:=\:\mathrm{ln}\left({x}−{i}\right)+\mathrm{ln}\left({x}+{i}\right) \\ $$$${f}'\left({x}\right)\:=\:\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{x}−{i}}+\frac{\mathrm{1}}{{x}+{i}} \\ $$$${f}^{\left({n}\right)} \:=\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\left({x}−{i}\right)^{{n}} }+\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\left({x}+{i}\right)^{{n}} } \\ $$$${f}^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\left[\frac{\mathrm{1}}{\left({x}−{i}\right)^{{n}} }+\frac{\mathrm{1}}{\left({x}+{i}\right)^{{n}} }\right] \\ $$$${f}^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{{n}} \left({n}−\mathrm{1}\right)!\left[\frac{\left({x}+{i}\right)^{{n}} +\left({x}−{i}\right)^{{n}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\right] \\ $$$${f}^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\left[\frac{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{C}_{{k}} ^{{n}} {x}^{{k}} {i}^{{n}−{k}} +\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{C}_{{k}} ^{{n}} {x}^{{k}} \left(−{i}\right)^{{n}−{k}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\right] \\ $$$${f}^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\left[\frac{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{C}_{{k}} ^{{n}} {x}^{{n}−{k}} \left({i}^{{k}} +\left(−{i}\right)^{{k}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\right] \\ $$$${f}^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\left[\frac{\underset{{p}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}\mathrm{C}_{\mathrm{2}{p}} ^{{n}} {x}^{{n}−\mathrm{2}{p}} {i}^{\mathrm{2}{p}} \left(\mathrm{1}+\left(−\mathrm{1}\right)^{\mathrm{2}{p}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\right] \\ $$$${f}^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\left[\frac{\underset{{p}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}\mathrm{C}_{\mathrm{2}{p}} ^{{n}} {x}^{{n}−\mathrm{2}{p}} \left(−\mathrm{1}\right)^{{p}} ×\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\right] \\ $$$${f}^{\left({n}\right)} \:=\:\mathrm{2}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\left[\frac{\underset{{p}=\mathrm{0}} {\overset{\lfloor\frac{{n}}{\mathrm{2}}\rfloor} {\sum}}\left(−\mathrm{1}\right)^{{p}} \mathrm{C}_{\mathrm{2}{p}} ^{{n}} {x}^{{n}−\mathrm{2}{p}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com